Evaluating Centrality Metrics in Real-World Networks on GPU

Anuroop Sriram Kollu Gautham

Kishore Kothapalli

P. J. Narayan R Govindarajulu

International Institute of Information Technology, Hyderabad
Gachibowli, Hyderabad, India — 500 032.
Email:{anuroop@, gautham k@} students.iiit.ac.in

{kkishore@, pjn@, gregeti@} iiit.ac.in

Abstract

GPGPU has received a lot of attention recently as a cost
effective solution for high performance computing. In this
paper we present a parallel algorithm for computing Be-
tweenness centrality (BC) using CUDA. BC is an important
metric in small world network analysis which is expensive to
compute. While there are existing parallel implementations,
ours is the first implementation on commodity hardware. Our
algorithm exploits parallelism at multiple levels of gran-
ularity to achieve good performance. We conduct several
experiments to show that the algorithm gives considerable
speedup over sequential algorithms. We also provide a
detailed analysis of the performance of the algorithm.

1. Introduction

Network analysis is currently an area of active research
with applications ranging from social network analysis
(friendship circles, organizational networks), phylogeny re-
construction and bio-informatics (protein interaction net-
works) to the Internet (web link analysis) etc. While these
networks seem unrelated, empirical observations show that
these graphs poses a number of similar properties like
the small world effect (low average diameter), community
structure, heavy tailed degree distributions etc.

Existing sequential algorithms have limited applicability
given the size of many practical networks. While fast and
scalable parallel algorithms have been proposed recently [1],
[6], they have mostly targeted high-end architectures like
the CRAY MTA-2. Of late, general purpose computing on
graphics processors (GPGPU) has become a cost effective
solution for high performance computing and there is a
definite need for GPGPU versions of these network analysis
algorithms.

In this paper, we present a parallel algorithm for evaluat-
ing both exact and approximate values for centrality metrics
in networks using GPUs. These algorithms have been opti-
mized for scale-free sparse graphs. To our knowledge, this

. Anuroop Sriram
. Kollu Gautham

is the first work on designing parallel algorithms for Social
Network Analysis (SNA) for the GPU. Our algorithms have
been designed to handle large graphs.

The paper is organized as follows: In section 2, we present
the CUDA programming model; in section 3, we define
Betweenness Centrality and give algorithms for it in sections
4 and 5. In section 6, we present our results and performance
analysis, and finally conclude in section 7.

2. CUDA Programming Model

The GPU is a massively multi-threaded processor con-
taining hundreds of processing elements or cores, called the
Scalar Processors (SPs). The SPs are arranged in groups of
eight, called the Streaming Multiprocessors (SMs). These
eight SPs execute in Single Instruction Multiple Thread
(SIMT) fashion. Hence, all the SPs in an SM execute the
same instruction at the same time[8].

The irregularity of memory accesses required for the
current problem make it very hard to apply conventional
GPU optimizations provided by CUDA. As the memory
access pattern is not known in advance and there is very
little data reuse in the algorithm, we cannot take advantage
of the faster shared memory.

3. Betweenness Centrality

One of the fundamental problems in network analysis is
to determine how important a given node/edge is relative to
other nodes/edges in the network. For example, in a social
network, one is interested in finding how important a person
is. Quantifying centrality of nodes is a well studied problem
and several metrics have been proposed for the same. The
best metric to use is specific to the application domain
and the network topology. The Betweenness Centrality (BC)
[2] of a node signifies how important that node is in
terms of communications between different nodes within
the network assuming that communication takes place only
through shortest paths.

Consider a graph G = (V,E) where V is the set of
vertices and E is the set of edges. Let the number of nodes

be denoted by n and the number of edges be denoted by m.
The BC of a node v is given by:

BC(v)= Y du(v) (1)

s#tF#v

where ds:(v) is the fraction of shortest paths from node
s to node ¢t which pass through the node v.

It can be observed that if many shortest paths pass through
a node, then its BC is higher; also, if there exist many
node disjoint shortest paths between a pair of nodes, then
the contribution of each of these paths towards the BC of
nodes that fall along these paths is small. Hence, a larger
BC implies a well connected and central node.

In a similar fashion, we can also define the BC of an edge
v — w as:

BCv — w) = Z 0st(v — w) 2)
s#t#v

4. Sequential Algorithm

The best known sequential algorithm for computing the
BC of all the nodes and edges in a graph is by Brandes
[7] which needs a time of O(n? 4+ nm). So far, there is
no algorithm for finding the BC of a single node which is
asymptotically faster than finding the BCs of all the nodes.
Brandes’ algorithm is as follows:

The dependency of a node s on node v is defined as
follows:

0s(v) =Y 6s(v) 3)

Then it can be shown that:

sy = S I 45, (w) “

g
w:weEpred(s,w) sw

Here, oy, is the number of shortest paths between s and
v, and pred(s,w) is the set of predecessors of node w
which fall on some shortest path to w from s. Similarly,
the dependency of s on edge v — w is given by:

O-S’U

0s(v = w) = (1+d5(w)) 5)

O-S’LU

Finally, we get
BC(v) =Y 4,(v) (6)
And

BC(U—>w):Z(5S(U—>w) @)

The BC of a node (or an edge) can be computed by
finding the set of predecessors of that node on shortest
paths from all other nodes. We can find the predecessors
by using any shortest path algorithm. However, note that in
a normal shortest path algorithm, the goal is just to find any
shortest path to a node; in this case, however, we need to
find and store every shortest path in the network (using the
predecessors).

After finding the predecessors, we do a reverse of the
shortest path algorithm, starting from nodes farthest from
the start node and retracing the forward algorithm using the
predecessor information. During this traversal, we find the
dependencies of all the nodes and edges using Equations (4)
through (7).

5. Parallel Implementation on CUDA

We need to find all the predecessors of all the nodes in the
graph in shortest paths starting from each node in the graph.
Hence, we would need O(n3) storage if we were to do find
all the predecessor sets at once. Even in the best case, when
we have only one predecessor for each node, we would still
need O(n?) storage. Hence, an APSP strategy like the Floyd-
Warshall’s algorithm[10] does not work. Instead, we resort
to performing breadth first forward and reverse traversals,
with one start node at a time by reusing the memory.

During the forward traversal, we find the predecessors,
level and the number of shortest paths to each of the nodes
from a given start node. In the reverse traversal, we start
at the nodes that were visited last and use the information
found in the forward traversal to compute the dependencies
of the predecessors. As we do not require storing the
predecessor information after the reverse traversal has been
done, we can reuse the storage if we perform only a few
traversals at a time. To compute the shortest path, we can
use the BFS algorithm for unweighted graphs or Dijkstra’s
SSSP algorithm for weighted graphs.

5.1. Algorithm

Algorithm 1 shows the pseudo code for unweighted
graphs for one traversal. In each iteration of the forward
traversal, we assign a set of nodes for each thread. Each
thread first checks if its current node has already been
visited. If yes, the thread proceeds to the next node; oth-
erwise, it looks at the levels of its neighbors. For each of its
neighbors which have already been visited, the node’s level
is updated and number of shortest paths to it is incremented
by the number of shortest paths to that neighbour. Also,
this neighbour is marked as a predecessor to this node. This
process continues until there are no more updates.

Note that we could have implemented the forward traver-
sal in two ways - each unvisited node updates its own level
if any of its neighbors has already been visited, or each

Algorithm 1 Computing BC in CUDA (only the computa-
tion within a block is shown)
Input: G(V, E), start node s
Output: Array node BC[1..n| and edge BC[1..m)|
1: currentLevel = 0, level[s] = 0, shortestPaths[s] = 1
2: while there are updates do > Forward Traversal
3 for each node n do in parallel
4 if level[n] == —1 then
5: for each visited neighbor m of n do
6
7
8
9

Add m to predecessors of n
level[n] = currentLevel+1
shortestPath[n]4+ = shortest Path[m]
: end for

10: end if

11: end for

12: currentLevel++

13: end while

14: while currentLevel > 0 do > Reverse Traversal

15: for each node n do in parallel

16: if leveln] == currentLevel then

17: for each predecessor p of n do

18: Update dependency of s on edge p — n
using Equation (5)

19: end for

20: end if

21: end for

22: for each node n do in parallel

23: if level[n] == currentLevel — 1 then

24: for each neighbour m of n do

25: nodeDependency of s on n += edgeDe-
pendency p — n on s

26: end for

27: end if

28: end for

29: currentLevel—

30: end while

already visited node updates all of its unvisited neighbors.
We have chosen the former method because we can find the
predecessors directly using the former method.

The reverse traversal proceeds in a similar manner as the
forward traversal. In this, we start from the highest level
and proceed towards the start node. In each iteration, the
nodes of the ‘current level’ compute the dependencies of
their predecessors using Equations (4) and (5).

5.2. Implementation details

The edges are stored as an array containing the adjacency
lists of all the nodes. The edge array has a size m. The nodes
are represented as an array of size n of indices into the edge
array, such that the value at the i*" position points to the
start of the edge list of the i*" node. The predecessors are

@/L\@
~o—

E[1]2]3]o]a]o]3]o]1]2]

Figure 1. An example graph with 4 nodes and 5 edges.
The corresponding nodes array (N) and edges array (E)
are also shown.

represented as a boolean array of size m, such that the value
at the #*" index is one if the i*" edge is from a predecessor
to its successor. There is one predecessor array per traversal.
Similarly, we have arrays of size n for the levels of nodes
and the number of shortest paths to each node. An example
undirected graph is shown in Figure 1.

We have chosen to perform one traversal (forward &
backward) per block. Performing one traversal using more
than one block requires returning back to the host at the end
of each iteration as there is no means for synchronization
across blocks in CUDA. This allowed us to extract the little
inherent parallelism available in BFS while avoiding the
expensive synchronization steps that make BFS on multiple
SMs inappropriate for execution on CUDA. The algorithm
shown in Algorithm 1 is run in each block with a different
start node.

In line 18, we update the dependency on the edge from
the predecessor to the current node using Equation (5). We
could have updated the node dependency on the current
node also in this line. But, the dependency on each edge
(Equation (5)) is written to only once while the dependency
on each node (Equation (4)) is updated as many times
as there are successors for that node. Hence, there is a
possibility for simultaneous writes to the same location
while updating the dependencies of nodes, which can result
in severe performance degradation.

To remove simultaneous writes, we modified the reverse
traversal by updating only the dependencies on edges at this
step. The dependencies on nodes of the predecessor level
(currentLevel - 1) are calculated by adding up the depen-
dencies on the edges from those nodes. This is done after
all the nodes in the current level have been processed (lines
22-28). This calculation can be done in parallel for all the
nodes. This process increases the amount of computation but
eliminates the need for using expensive atomic operations.
This change improved the performance significantly.

16384

4096

1024

256 /‘,/
64 / —4—GPU
16 CcPU

Time in sec

11 13 15 17 18

Log of number of nodes

Figure 2. Runtime comparison of CPU and GPU on
synthetic datasets of various sizes. The horizontal axis
shows the scale of the graph. The number of nodes is
2scale and the number of edges is 8 * 2¢al¢,

Scale/dataset | Runtime on GPU (s) Runtime on CPU (s) | Speedup
12 1.74 52.01 29.72
14 7.89 162.20 20.55
16 39.67 659.45 16.62
18 189.16 3441.87 18.20
19 402.33 7717.01 17.84
ND-Web 59.73 818.95 13.71

Table 1. Runtime on CPU and GPU in seconds for
approximate BC with a sample of 2!2 nodes. The
number of nodes in the graph is 2°°*'¢ and the number
of edges is 8 x 2°°*¢, The last row shows the runtime
on the ND-Web dataset.

5.3. Approximate BC Computation

For large-scale graphs, computation of exact BC is not
computationally viable. Hence, we have also implemented
an adaptive sampling based approximate BC algorithm pro-
posed in [5]. This algorithm estimates the BC by sampling a
subset of source nodes and performing the SSSP algorithm
given in Algorithm 1 using only these. This algorithm is
adaptive in the sense that the number of samples varies with
the information obtained from each sample. The algorithm
is based on the following theorem from [5]:

Theorem 1: For 0 < € < 0.5, if the centrality of a vertex
v is n? /t for some constant ¢ > 1, then with probability
> 1 — 2¢ its centrality can be estimated to within a factor
of 1/e with et samples of source vertices.

6. Results

This section summarizes our experimental results. We
used an NVIDIA Tesla T10 processor which has 30 SMs
with 8 SPs each. It has a global memory of 4 GB. As
our storage requirements are O (m+n), we can process
graphs with several million vertices and edges. We also

implemented the sequential algorithm given in [7] on an
AMD Athlon(tm) 64 X2 Dual Core Processor 4400+ at 3.0
GHz with 2 GB RAM. We used the ND-web dataset[4]
to test our results. The ND-web is a network of over 0.32
million nodes representing web pages and 1.5 million edges
representing links between them.

Further, we also tested our algorithm using synthetically
generated small world networks generated using the Recur-
sive MATrix (R-MAT) toolkit[9]. R-MAT is an algorithm to
generate scale free graphs which works by recursively sub-
dividing the adjacency matrix and distributing the edges into
these partitions. We used undirected, unweighted versions of
all the networks in our experiments.

We ran the approximate BC computation algorithm on
ND-Web dataset and on the synthetic data using a sample
of 2!2 nodes on the GPU and the CPU. Our results are
summarized in Figure2 and Tablel. We obtained a speedup
of 13.7 using on the ND-Web dataset and even higher
speedups using the synthetic datasets.

6.1. Performance Analysis

In this section we provide a detailed performance analysis
for the algorithm based on [11]. The GPU performance
is limited by the following three characterstics of the BC
algorithm:

1) Non-contiguous memory access pattern: As the de-
grees in a small world network are highly variable
and the fact that adjacent neighbors generally do not
constitute adjacent elements in the nodes array, we
cannot make effective use of the available shared
memory. This affects the performance significantly
because the access time for the global memory is about
100-150 times the access time for the shared memory.

2) Low arithmetic intensity: The BC algorithm is highly
memory intensive. In parallel programs, in general,
memory access latency is hidden behind computations.
However, the BC algorithm contains hardly any com-
putation. This makes it very hard to hide the memory
latency which causes in memory congestion. This
leads to very low performance. To measure the effects
of memory congestion, we plotted a graph between
speedup vs number of SMs used (Figure 3). This graph
shows that there is very little improvement in speedup
between using 16 SMs and 30 SMs due to memory
congestion.

3) Unstructured parallelism: In the BC algorithm, paral-
lelism can be exploited at three levels of granularity:
coarse-grained (running multiple traversals with dif-
ferent start nodes in parallel), medium-grained (pro-
cessing different nodes of the same level in parallel),
and fine-grained (processing the neighbors of the same
node in parallel). Coarse-grained parallelism is embar-
rassingly parallel. However, multiple parallel traversals

Speedup

over1SM

0 T T

0 10 20 30
Number of SMs used

Figure 3. Speedup on GPU with different number of
SMs with respect to one SM using the ND-Web dataset.

need more memory as we need to store more copies of
the predecessor, level and shortest paths arrays. Hence,
memory constraints limit the amount of coarse-grained
parallelism that can be exploited.

Medium- and fine- grained parallelism depend on
the degree of the nodes, which is highly variable.
As the threads in a block run in a SIMT fashion,
we cannot exploit a large amount of medium-grained
parallelism because, if one thread finishes processing
the neighbors of the node assigned to it, it has to wait
till all the other threads in its block have also finished.
Also, the degrees follow power laws, which means
that most nodes have a very low degree. Hence, the
fine-grained parallelism that can be exploited is also
limited. Further, medium- and fine-grained parallelism
add to memory congestion. As the algorithm is highly
memory intensive, exploiting more parallelism at finer
granularities may actually reduce the performance.

We exploit coarse-grained parallelism at the block level by
running different traversals in different blocks and medium-
grained parallelism at the thread level. As the algorithm
already has a lot of memory congestion, exploiting fine-
grained parallelism affects performance and hence, we re-
frain from exploiting it.

In addition to all these, the algorithm used for the GPU is
also different from the one used for sequential processing.
To determine the effect of the former on the performance,
we implemented the GPU-like algorithm for sequential pro-
cessing on the CPU and found that it ran 3 times slower
than the queue-based sequential algorithm on the ND-Web
dataset.

40

7. Conclusion and future work

In this paper we presented an algorithm for evaluating
betweenness centrality of edges and nodes in small-world
networks on the GPU. To our knowledge, this is the first
attempt to implement a small world network analysis algo-
rithm on the GPU. Our algorithms, though somewhat limited
in speed by the large number of irregular memory accesses,
gave considerable speedup over the CPU. We also analyzed
the performance in detail and explained the reasons for the
observed results. In the future, we plan to extend this algo-
rithm to use multiple GPUs and also develop algorithms for
other network analysis problems like community structure
identification which use the betweenness centrality metric.

References

[1] D. A. Bader and K. Madduri, Parallel algorithms for evaluating
centrality indices in real world networks, in emphThe 35th
International Conference on Parallel Processing (ICPP 2006),
2006.

[2] L. C. Freeman, A set of measures of centrality based on

betweenness, emphSociomtry, vol. 40, no. 1, pp. 3541, 1977.

[3] H. Jeong, S. P. Mason, A.-L. Barabasi, and Z. N. Oltvai,

Lethality and centrality in protein networks, emphNature, vol.

411, p. 41, 2001.

[4] Notre Dame CNet resources. http://www.nd.edu/ networks/ re-

sources.htm

[5] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, Ap-

proximating Betweenness Centrality. The 5th Workshop on

Algorithms and Models for the Web-Graph (WAW2007), 2007

[6] D. A. Bader and K. Madduri, SNAP, Small-world Network

Analysis and Partitioning: an open-source parallel graph frame-

work for the exploration of large-scale networks, emphThe

22nd IEEE International Parallel and Distributed Processing

Symposium (IPDPS), 2008.

[7] U. Brandes, A faster algorithm for betweenness centrality,

emphJournal of Mathematical Sociology, vol. 25, no. 2, pp.

163-177, 2001.

[8] NVIDIA CUDA programming guide. http://www.nvidia.com/

object/cuda_develop.html

[9] D. Chakraborthy, C. Faloustsos and Y. Zhang, Visualization

of large networks with min-cut plots, A-plots and R-MAT.

International Journal of Human-Computer Studies, vol. 65,

pages 434-445, 2007.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,
Introduction to Algorithms, 3 edition, emphMIT Press, 2009.

[11] D. Tu and G. Tan, Characterizing Betweenness Centrality
Algorithm on Multi-core Architectures, emphlEEE Interna-
tional Symposium on Parallel and Distributed Processing with
Applications (ISPA), pp. 182-189, 2009.

