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ABSTRACT 

The proposition of a single ISA heterogeneous 

multi-core architecture as a mechanism for 

saving power sparked the revolution of 

experimenting with various thread to core 

assignment and migration policies. This paper 

proposes a compiler based approach for 

migration, which takes into account the ILP 

inherent in a given instruction sequence (of a 

thread).  In this mechanism, the compiler splits a 

thread into blocks, tags a block to a core based 

the underlying core architecture and optimizes 

the split. During execution, the thread is migrated 

between cores based on the tags such that power 

used is minimized without a negative impact on 

the overall performance. The paper also proposes 

a mathematical model for the migration policy 

and derives an expression for the maximum 

number of parallelizable and non-parallelizable 

blocks an assembly code could have, up to which 

migration would be favorable. We have shown by 

simulations that our migration policy provides 

better performance/power ratio when compared 

to assignment of the entire thread to a single 

core.   

1. INTRODUCTION 

Heterogeneous multi-core systems consist of 
cores with varying capabilities and varying levels 
of power dissipation. This has given rise to a 
scenario where thread to core assignment 
critically dictates overall performance and power 
usage. Various approaches for solving this 
problem have evolved. The changes in ILP within 
a thread have severely limited the possibility of 
the above assignment. Thus the question arises, 
“What is the optimal core for the execution of a 
thread or a part of the thread that aims at 
minimizing power dissipation and maximizing 

performance?” 
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This paper proposes a mechanism in which the 
compiler analyses the assembly instruction 
stream to identify blocks of instructions, tag each 
block to one of the cores in the heterogeneous 
multi-core processor such that, if the block were 
to be executed in the corresponding core, it gives 
the maximum performance with minimum power 
dissipation. Once the code has been tagged and 
optimized, it then begins its execution in the first 
assigned core. When a change of tag is 
encountered, the thread is migrated to the core 
mentioned in the tag.  Basically, this paper aims 
at shifting the book-keeping required for thread 
migration to the compiler so that the cost of 

hardware support is little.  

The remainder of the paper is organized as 
follows. Section 2 describes the prior work done 
in this area. Section 3 describes the architectural 
assumptions made in the paper. Section 4 
describes in detail, the algorithm used by our 
compiler. Section 5 discusses migration issues. 
Section 6 proposes a basic analytical model for 
power and performance. Section 7 shows the 
performance evaluations followed by the 

Conclusion.  

2. RELATED WORKS 

[6] proposes a general overview of 
heterogeneous multi-core processors, the 
benefits of migrating from a homogeneous to a 
heterogeneous core model, scheduling and 
software issues in a heterogeneous architecture. 
[8] gives a critical analysis of single ISA 
heterogeneous multi-core architectures. [5], a 
work by the same authors, describes the 
significant reduction in power dissipation as a 
result of judicious thread to core assignments. [7] 
proposes a dynamic mechanism of thread 
migration where execution traces and ratio of 
ISPs across two heterogeneous cores dictate 
thread migration. The need to dynamically 
monitor the ISP ratio across cores creates the 



need for forced thread migrations, something of 
an overhead in the thread execution.  [11] 
discusses a predictive approach for thread to 
core assignment in which similarities in program 
structure are exploited dynamically to perform 
scheduling. [10] discusses the issues involved in 
migration of a thread across cores. These issues 
encompass a critical analysis of all components 

right from cache hierarchy to register state.   

With the above having mentioned, our work 
could be a considered as something which would 
complement the issues involved in thread 
migration. As the issues involved in thread 
migration with respect to the underlying 
hardware have been sufficiently discussed in 
[10], we restrict our discussion only to the 
methods that set the stage for and trigger off 

thread migration.   

3. ARCHITECTURAL DESIGN 

We have assumed a simple dual core single ISA 
heterogeneous architecture for our processor. 
The heterogeneity is purely at a theoretical level 
and we do not use a predefined set of attributes 
to explicate the heterogeneity. We term the 
processors as P (processor capable of extracting 
parallelism) and NP (processor incapable of 
extracting parallelism). A few features that may 
define the heterogeneity between P and NP are:    

• Clock frequency. 

• Functional unit distribution, number and 
function. 

• Width of data/address paths.  

• Pipeline structures. 

• ILP extracting units like Scoreboards, 
Tomasulo reservation stations and 
Reorder buffers for speculative 

execution. 

In addition to this, we assume the existence of 
ancillary hardware such as interconnects to 
support migration. More specifically, the paper 
assumes an ideal migration where the entire 
thread's state is transferred from one core to 
another without loss during the thread migration 
process. Although, we do take into account the 
time delay involved in the state transfer. We also 
require a change in the ISA of the heterogeneous 

core processor. We use an instruction called 
MIGRATE P (NP) which literally means “Migrate 

the thread to Processor P (NP)”. 

4. CORE SPECIFIC BLOCK TAGGER (CSBT) 

The CSBT is a unit of a compiler, the primary 
purpose of which is to tag blocks of assembly 
code to a core that would execute it with 
minimum power and without a compromise in 
performance. The CSBT should be aware of the 
underlying architectures of both the cores. The 
input to the CSBT is the assembly code that has 
been created after all compiler based 
optimizations. The output is an assembly code 
with the MIGRATE instructions inserted at 
vantage points. The algorithm used by the CSBT 

chiefly consists of the following 4 steps: 

4.1 ILP based Block Splitting: 

The available assembly code is scanned, 
disregarding the branches present in it and, 
blocks of statements are identified as either 
parallelizable or non-parallelizable. A block is 
placed under either of the above two 

classifications based on the following two factors: 

• The instructions in a block do not have 
Data Dependencies over one another. 

• The instructions in a block do not have 
Structural dependencies over one 

another. 

Ideally, they must have a lot of ILP in them such 
that their execution time in a processor with ILP 
extracting units is significantly lower than in a 
simple processor, assuming both processors have 
the same state of execution. Once the code has 
been split into blocks, appropriate “MIGRATE” 

instructions are added at the end of each block. 

4.2 Branch Target-based Migration: 

Based on the target address of the branch 
instructions, appropriate “MIGRATE” instructions 
need to be inserted. This is based on the 

following three rules: 

• If the “JUMP” instruction is in block 
labeled “X” (X=P or NP) and the target 
address goes to block labeled “X”, then 
no migrate instructions need to be 
inserted. 



• If the “JUMP” instruction is in block 
labeled “X” and the target address is in 
the first half of a block labeled “Y”, then 
the “MIGRATE” instruction at the top of 
block “Y” needs to be pulled down to the 
target address. 

• If the “JUMP” instruction is in block 
labeled “X” and the target address is in 
the latter half of a block labeled “Y”, then 
a “MIGRATE” instruction needs to be 

added at the target address.   

4.3 Block Merging: 

A threshold is set for the minimum size of a 
block. If such a small block is found, it is 
coalesced with one of its neighboring blocks. 
Further, if there are two blocks of the same type, 
they are coalesced. This step is mainly to 
eliminate blocks that are too small and to reduce 
the overhead caused due to too many 

migrations. 

4.4 Re-addressing: 

The address of the instructions, data and code 
references are changed after allocating fresh 
addresses to the program instruction due to the 

addition of the “MIGRATE” instructions. 

5. MIGRATION ISSUES 

Once the CSBT has tagged the assembly code 
with appropriate instructions, we can proceed 
with the execution of the code and the migration 
of the threads across cores. We examine the 

following issues involved in migration: 

5.1 A Priori Migration: 

Generally the migration overhead µ is a function 
of the amount of processor state to be 
transferred α, and the support of hardware for 

migration β. 

µ � ���, ��                         �1� 

Since the CSBT tagged code already has the 
MIGRATE instruction inserted at appropriate 
locations, another pass on the CSBT can be added 
to insert AP MIGRATE (A priori MIGRATE) 
instructions sufficiently before MIGRATE 
instructions to perform a priori migration of 
processor state, which in turn, masks the 
migration overhead. This may, however require 
dirty bits to propagate post-migration state 

changes. How far the AP MIGRATE should be 
placed ahead of MIGRATE depends on the size of 
the state and the speed of migration 

interconnects.  

5.2 Branch predictor type: 

If the predictor is a correlating one, the amount 
of migration overhead increases with the amount 
of information, about the previous branches, to 
be transferred, which in turn increases with the 

degree of correlation of the predictor γ.  

Now the Migration overhead is written as: 

µ � ���, �, 
�                          �2� 

Hence if the predictor state also needs to be 
transferred, the positioning of the AP MIGRATE 
instruction should also consider this. There is, 
however, one nuance to be considered here. If 
the degree of correlation is very high, thus 
causing the AT MIGRATE instruction to be places 
much ahead of the MIGRATE instruction, there is 
a good chance of the occurrence of an intra-block 
branch between the AT MIGRATE and the 
MIGRATE instructions. If this were a single 
branch, very little information would be lost. 
However, if this were a tight loop, considerable 
branch predictor information is lost and this is 
reflected by the increased branch predictor 
warm-up time in the other core after migration. 
There is thus, a tradeoff between migration time 

and warm-up time.  

5.3 Speculation: 
If both the cores support speculative execution 
(which implies that the two cores come with 
good branch predictors), our mechanism can 
actually reduce the overhead incurred due to 
flushing the Re-Order buffers (ROBs) due to a 
misprediction. When a branch is encountered 
during the execution of a thread in Core 1, and if 
the branch is predicted to be taken, and if the 
target is a MIGRATE instruction, state is 
transferred to core 2 and speculative execution 
proceeds there. If the prediction were to be 
correct, the ROBs are committed. If the branch 
were mispredicted, then the execution can 
simply proceed on in core 1 and an interrupt can 
be sent to core 2 to clear the ROBs. If, however 
the next instruction in the sequence is a 



MIGRATE, the migration can proceed in parallel 
to clearing the ROB. If the execution is 
speculated across branches and if the targets 
have migrations, then several migrations would 
occur and a single misprediction in a core X 
would lead to the clearing of ROB in the same 
core X which in turn would incur an overhead in 
performance. Thus, the amount of migration and 
flushing overhead is directly proportional to the 

degree of speculation δ. 

µ � ���, �, 
, ��                     �3� 

6. MATHEMATICAL MODEL FOR 

PERFORMANCE: 

Let x1 be the average power consumed per 
instruction on the powerful processor P1, x2 be 
the average power consumed per instruction on 

the ordinary processor P2. 

� � �� � ��                                          �4� 

Let n1 be the number of instructions executed 
that may be executed in parallel, n2 be the 
number of instructions executed sequentially in a 
particular assembly program. 

So the power consumed in the first processor is:  

�1 � ��� � ��� � ��                           �5� 

The power consumed in the second processor is: 

�2 � ��� � ��� � ��                           �6� 
In the scheme proposed, n1 instructions are 
executed in P1 and the n2 in P2.The power 

consumed in the proposed scheme is: 

� � �� � �� � �� � ��                               �7� 

The ratio P1:P is: 

�1
� � ��� � ��� � ���� � �� � �� � ��                      �8� 

Since x1>x2,  

�1
� � 1                                                   �9� 

Further it may be noted that the performance 
doesn't vary. This is so because the n2 

instructions that can be executed sequentially do 
not have performance improvement in P1. This 
means they may be executed in the lower power 
consuming processor without any performance 

loss. 

Now let us calculate the maximum number of 
blocks into which the CSBT can tag a code such 
that, instead of performing migration, the code 
can as well be executed in a single processor. Let 
k+1 represent that count. Hence k is the number 
of migrations. Assuming a constant migration 
overhead m and assuming the average time to 
execute an instruction in P1 and P2 as t1 and t2 

(t1<t2), we have (10) as: 

1
��� � �� � �� � ������ � �� � �� � �� � ���

� 1
������� � ���� 

� � 1
�  ��� � �� � �� � ���

� ������� � ����
��� � �� � �� � ���!      �11� 

Similarly for the other processor P2, we replace ���� by ����. Knowing the parameters for the 
various processors and the constant hardware 

migration overhead m, k+1 can be calculated. 

7. SIMULATION 

We simulated our migration policy using GXemul 
0.4.7.2 [5] and GCC MIPS cross compiler [4]. We 
used MIPS R3000 and R10000 processors for our 
simulation. The comparison between the two 
processors can be found in [2] and [3]. We 
simulated a software migration using shared 
memory. We used the CSBT to tag 20 programs 
with varying levels of dependencies but with 
uniform level of memory access. We normalized 
the block sizes and plotted the execution times 

as shown in Figure 1. 

 

Figure 1. Execution time for codes with varying 

normalized block sizes. 
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As expected, complete thread execution in 
R10000 gave the best results for all block sizes. 
The migration results in a gradual increase in 
execution time because of the increasing 
migration overhead with the decrease in 
normalized block size (increase in the number of 
blocks). Now we plotted performance/power or 
1/(Execution time*power). The result is shown in 
Figure 2. This gave better results for the 
migration over execution in R10000, particularly 

if the block sizes are large. 

 

Figure 2. Performance/Power ratio for codes 

with varying normalized block sizes. 

8. CONCLUSION AND FUTURE WORK 

Thus we have seen how migration book-keeping 
can be shifted to the compiler just like shifting 
ILP extraction to the compiler. The CSBT can be 
added as an extra pass in any optimizing compiler 
to facilitate thread migration, principally to save 
power with no loss in performance. We have 
planned to implement our idea in m5 simulator 
by using single ISA heterogeneous dual-core chip 
consisting of Alpha EV5 and Alpha EV6 with 
necessary hardware support for migration and 
ISA support for MIGRATE and AP MIGRATE 
instructions and compare the results with IPC 
based dynamic migration. We have also planned 
to make a detailed analysis on the issues stated 
and examine how they affect overall 

performance.  

9. REFERENCES 

[1] http://en.wikipedia.org/wiki/R10000 
[2] http://en.wikipedia.org/wiki/R5000 

[3] http://gcc.gnu.org/ 
[4] http://gxemul.sourceforge.net/ 
[5] Kumar, R.   Farkas, K.   Jouppi, N.P.   

Ranganathan, P.   Tullsen, D.M.  Processor 
Power Reduction via Single-ISA 
Heterogeneous Multi-Core Architectures. 
Computer Architecture Letters. Volume: 2, 
Issue: 1. On page(s): 2- 2.  January-December 
2003. 

[6] M. Gillespie. Preparing for the second stage 
of multicore hardware: Asymmetric 
(heterogeneous) cores. Technical report, 
Intel Corporation, July 2008. 

[7] Michela Becchi , Patrick Crowley, Dynamic 
thread assignment on heterogeneous 
multiprocessor architectures, Proceedings of 
the 3rd conference on Computing frontiers, 
May 03-05, 2006, Ischia, Italy. 

[8] Rakesh Kumar , Dean M. Tullsen , 
Parthasarathy Ranganathan , Norman P. 
Jouppi , Keith I. Farkas, Single-ISA 
Heterogeneous Multi-Core Architectures for 
Multithreaded Workload Performance, 
Proceedings of the 31st annual international 
symposium on Computer architecture, p.64, 
June 19-23, 2004, MÃ¼nchen, Germany  

[9] Saisanthosh Balakrishnan , Ravi Rajwar , Mike 
Upton , Konrad Lai, The Impact of 
Performance Asymmetry in Emerging 
Multicore Architectures, Proceedings of the 
32nd annual international symposium on 
Computer Architecture, p.506-517, June 04-
08, 2005 

[10] Theofanis Constantinou , Yiannakis Sazeides , 
Pierre Michaud , Damien Fetis , Andre 
Seznec, Performance implications of single 
thread migration on a chip multi-core, ACM 
SIGARCH Computer Architecture News, v.33 
n.4, November 2005 

[11] Tyler Sondag , Viswanath Krishnamurthy , 
Hridesh Rajan, Predictive thread-to-core 
assignment on a heterogeneous multi-core 
processor, Proceedings of the 4th workshop 
on Programming languages and operating 
systems, October 18-18, 2007, Stevenson, 
Washington.

 

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

64 32 16 8 4 2

P
er

fo
rm

an
ce

/p
ow

er
 (1

/J
)

Normalized Block size (number of instructions)

Normalized Block Size Vs Performance/Power 

R10000

R5000

Migration


