
Fault Tolerance in OpenSPARC
Multicore Architecture

Using
Core Virtualization

Kavitha Chandrasekar, Revathi Ananthachari,Sangeetha Seshadri and Ranjani
Parthasarathi

Department of Computer Science & Engineering,
College of Engineering Guindy, Anna University, Chennai, India

1Abstract- In multicore architecture,
fault tolerance issues will increase
with increase in number of cores.
Size scaling has been considered the
source of dramatic performance
gains. This scaling has lead to
mounting reliability concerns due to
increasing power densities and on-
chip temperatures. Most wear-out
mechanisms that plague
semiconductor devices are highly
dependent on these parameters.
Traditional techniques for dealing
with device failures have relied on
the coarse-grained replication of
structures, ignoring the inherent
redundancy in CMP architectures.
Here we propose to make effective
use of the redundancy of functional
units in the 8 cores in OpenSPARC
multicore processor to overcome
faults by core virtualization. Here we
specifically make use of virtualization
at functional unit-level instead of
core-level virtualization. In addition,
some intra core execution resources
may be extended to provide
functionally equivalent results.

Keywords-CMP, OpenSPARC
processor,Core Virtualization, Emulation

1 1 Kavitha Chandrasekar, Revathi Ananthachari,
Sangeetha Seshadri, Ranjani Parthasarathi

1. Introduction- Fault tolerance and
reliability are important factors in
computer architecture that need to be
taken into consideration for addressing
hard faults. Faults in-field and
manufacturing defects need to be
addressed and corrected. If we develop
architectures and design methodologies
to identify faulty logic and recover by
replacing the faulty unit alone, it would
be more efficient than replacing the
entire core.

To tolerate faults in multicore
architecture, dedicated spare
(reconfigurable core) cores can be used
for recovery in case one of the cores
has a faulty unit. A reconfigurable unit
inside each of the cores will also help in
fault tolerance. However, in these cases
the reconfigurable unit will be idle most
of the time. The redundancy due to
multiple homogenous cores present on
the same die is not exploited in the
above cases.

In this work, we propose to implement
fault tolerance at functionality level by
introducing a software layer to carry out
fault detection and tolerance. We
propose to implement virtualization for
effectively making use of partially
damaged cores. The virtualization layer
will act as a liaison between the
operating system and the hardware.

This software acts as a virtualizing
agent which can mask failure or
functionalities and create the abstraction
of logical processor cores capable of
performing required execution. These
logical cores are obtained by mapping
units from partially damaged physical
cores. Logically mapping out of failed
units and mapping in of same
functionality from other cores, the
virtualization software can hide failures
from application programs without need
of having reconfigurable units inside the
same core or using dedicated spare
cores. We also propose the usage of
emulation of a functionality of failed unit
[1] by extending the functionality of
another unit within the same core.

 The rest of this paper is organized
as follows. Section 2 examines prior related
work in architectural fault tolerance
schemes. Section 3 explains in detail the
existing architecture. Section 4 and 5
explains our proposed modifications to
the system. Section 6 concludes.

2. Related Work:

Many ideas have been developed in
order to address hardware failure in
computer architecture. Some of them
have been explained below.

Bower et al. detected hard faults using
an on-line mechanism [5]. A hardware
checker is employed that maintains a
counter for each error identified. When a
threshold value is reached, it is
considered to be a hardware fault.

Some design for test (DFT) techniques
to detect manufacturing defects and to
map out the pipeline portions which are
faulty has also been innovated [7].

CASP is a self-test mechanism where
the system tests itself using tests stored
in non volatile memory while continuing
normal operation simultaneously. Hence
this will not affect the operations of the
entire system [2].

A fingerprinting technique for error
detection in cores has also been
invented [6]. Architectural state is stored
in form of architectural fingerprints. A
periodic comparison is done across
redundant cores using these fingerprints
for detecting errors.

 After fault detection, it is necessary to
map out the faulty units and map in
alternative execution resources. Coarse
grain duplication of execution resource
has been employed to recover from
faults [4].

Migration of thread from one core to
another in order to bring about fault
tolerance has also been suggested [1].

Some limitations in the prior works are:

• Using redundant units for fault
tolerance inside single core does not
exploit redundancy due to multiple
cores on the same die.

• Usage of dedicated cores as spare
cores for fault tolerance is inefficient.

• Migration of entire threads to
another core during fault tolerance
will be less efficient than mapping of
only a functionality which will be only
a subset of functionalities in the
thread.

• In most cases software intervention
is not used for fault recovery.

In this work, we observe that intra core
redundancy or usage of spare cores is
not the most efficient way to handle fault
recovery. Hence, we propose to address
fault tolerance by virtualization of cores
by mapping of functional units which
makes redundancy sharing across cores
possible or by emulation [1] of the failed
functionality.

3. Existing Architecture:

Overview of OpenSPARC Architecture

 Fig 1: OpenSPARC Architecture [3]

OpenSPARC processor has 8 cores on the
same die. The OpenSPARC architecture
has reduced temperature gradients which
serve to be an effective reliability gradient.
By allowing individual threads or even cores
to be idled OpenSPARC implements good
power control features. Clock gating and
power throttling implemented in
OpenSPARC reduce the overall power
consumption in the cores. OpenSPARC
architecture has core level redundancy. This
in addition to control over power
consumption makes it a reliability-aware
processor [3]. Wear out and drift
mechanisms enhance the overall chip
reliability.
The OpenSPARC architecture also contains
effective protection mechanisms for on-chip
memory. It supports soft error detection and
correction. Single Error Correction/Double
Error Detection Error Correcting Codes are
used to protect memory arrays greater than
8KB. Parity checking is employed for arrays
greater than 2KB[3] .
Multi-bit memory errors within a DRAM
device are taken care by Chipkill correction
technology which corrects any error
contained within a single memory nibble

and detects errors in any two nibbles.
Checksum is used to detect multi-bit errors
in data written in DIMM. In case of a
memory error data is recovered using the
checksum information. Thus ECC is used to
correct single bit errors and checksum and
Chipkill for multi-bit errors and DRAM chip
failure [3].

Fig 2: Protection mechanisms for
On-chip memories [3]

4. Proposed Work:

The OpenSPARC processor contains 8
cores on a single die. Each core is
capable of running 8 threads. The
OpenSPARC architecture includes a
para-virtualizing hypervisor layer that
exists in between the operating system
and the hardware .It is employed to give
an illusion of 64 cores to the operating
system (8 threads in each of the 8
cores).

Though the OpenSPARC processor
acts as a reliability aware processor with
enough soft-error detection techniques,
it does not tolerate hard-faults. In our
architecture we propose to handle the
issues involved in detection, isolation
and recovery of hard-faults.

The main units in the core that can fail
are [8]:

• Instruction fetch unit (IFU)
• Integer execution units (EXU0 and

EXU1)
• Load-store unit (LSU)

Fault Recovery: • Floating-point and graphics unit
(FGU)

In the recovery stage, the faulty units
need to be mapped out, preventing
them from further usage. Recent work
has also examined ways to apply fine
grain micro architectural design for test
(DFT) and map out functionality.

• Memory management unit (MMU)
• Trap logic unit (TLU)
• Stream processing unit (SPU)

Fault detection:
To recover from the fault, we propose to
introduce a new virtual layer below the
hypervisor layer that gives an illusion of
eight cores to the hypervisor layer even
in case of failure of components of any
of the cores. The new layer takes care
of mapping out the failed functional unit
and mapping in a working redundant
functionality from another core and thus
presenting a complete logical core to the
hypervisor layer as shown in the figure
below.

We propose to use testing techniques
specified in CASP [2] for the fault
detection phase. There are four phases
that have been suggested, namely, test
scheduling, pre-processing, performing
the CASP tests and resuming normal
system operation. The work proposes to
select one or more cores for online-test
during normal operations of the system.
The selected core(s) is then stalled and
temporarily isolated from the rest of the
system and CASP tests, stored in non
volatile memory, are applied. The
system then resumes normal operation.

We also propose to implement
emulation of functionality that has failed
using intra core resources. Software
based emulation of failed functionality
using resources available inside the
same core will also help recover from
faults [1].

Fig 3: Core-1 has a failed exec unit (EXU0). EXU0 of core 2 replaces the failed unit to form virtual core C1

5. Proposed Implementation:
We propose to implement this fault
tolerance technique on the OpenSPARC
processor. The IFU of the processor
includes a decode unit which decodes
the instructions after the fetch stage and
the instructions are then assigned to the
appropriate units based on their
availability. The availability status of
every unit in the core is maintained in
the decode unit of the core. In addition,
we propose to maintain a status of the
faulty units in the decode unit of every
core and when an instruction to be
scheduled on the faulty unit is
encountered the decode unit informs the
hypervisor layer which takes care of
constructing the virtual core with a
working unit from another core. Now a
new instruction which does not use the
faulty unit can be scheduled to work on
the faulty core. When the decode unit of
a processor itself fails this information is
maintained in the hypervisor and the
instruction is appropriately decoded by
some other core. Either a round robin
usage of the other cores’ units or a unit
of a core that is comparatively lightly
loaded can be used instead of the faulty
core’s unit. The logic for this scheduling
of instructions on the cores is
maintained in the hypervisor level. All
the communication between the
processors and the hypervisor layer is
effected using the shared L2 caches.

6. Conclusion:
In this paper, we have introduced
virtualization of physical cores by
introducing a software layer between the
hardware and hypervisor layer of
OpenSPARC processor to recover
functionality in partially damaged CMPs.
Redundancy of multiple cores on a
single die has been used to efficiently
bring about fault tolerance. This helps
spread the impact of the failure across
cores. Hence, core virtualization is an
efficient mechanism as compared to
intra-core redundancy or usage of spare
cores.

References:
[1] Russ Joseph,”Exploring Salvage

Techniques for Multi-core
Architectures”.Workshop on high
performance computing reliability
issues(in conjunction with HPCA 2005).

[2] Yanjing Li, Samy Makar, Subhasish
Mitra ,”CASP: Concurrent Autonomous
Chip Self-Test Using Stored Test
Patterns”, Proceedings of the DATE ,
(Design Automation and Test in Europe)
March, 2008, published in Issue
16:18:31.0

[3] Ishwar Parulkar, Alan Wood, James C.
Hoe, Babak Falsafi, Sarita V. Adve,
Joseph Torrellas, Subhasish Mitra,”
OpenSPARC: An Open Platform for
Hardware Reliability Experimentation”,
published in the Fourth Workshop on
Silicon Errors in Logic-System Effects
(SELSE), April 2008.

[4] J. Srinivasan, S. V. Adve, P. Bose, and
J. A. Rivers. “Exploiting structural
duplication for lifetime reliability
enhancement”. In Proceedings of the
32nd International Symposium on
Computer Architecture, June 2005.

[5] [Bower 05]Fred A. Bower 1,3, Daniel J.
Sorin2, and Sule Ozev2, ”A Mechanism
for Online Diagnosis of Hard Faults in
Microprocessors”, Microarchitecture,
2005. MICRO-38, Proceedings, 38th
Annual IEEE/ACM International
Symposium on 12-16 Nov 2005. Date
Published in Issue: 2005-12-05
08:50:30.0

[6] J.C. Smolens, et al., “Fingerprinting:
Bounding soft-error detection latency
and bandwidth”, IEEE Micro, Nov-Dec
2004, Date Published in Issue: 2005-01-
31 08:27:50.0

[7] Schuchman. E.; Vijaykumar, T.N.,
“Rescue: a micro architecture for
testability and defect tolerance”,IEEE,
Computer Architecture, 2005.
Proceedings. 32nd International
symposium on Volume , Issue , 4-8
June 2005 Page(s): 160 – 171

[8] OpenSPARC T2-Core Microarchitecture
Specification

[9] www.opensparc.net

