
Design-space exploration of flash augmented architectures
Thanumalayan S1, Vijay Chidambaram V1, Ranjani Parthasarathi2

College of Engineering, Guindy, Anna University

Abstract
Flash technologies are rapidly improving in terms
of bandwidth and latency. In this paper, we
consider incorporating flash technologies at
various levels in the existing architecture. For
each level, we estimate the access time
considering different levels of concurrency. We
speculate on how highly concurrent programs
might benefit from the incorporation of flash into
the architecture. We aim to reduce operating
system complexity by integrating some memory
management functions with the proposed
architecture. Finally, we also predict
architectural changes that would become feasible
if the trend in reducing latencies and improving
bandwidth continues. 1

1 Introduction
The development of many-core architectures has
shifted the focus in design of memory modules to
high bandwidth and power efficient solutions [13]
rather than low latency ones. In this context, Flash
assumes a significant role, as it offers the needed
performance at low cost. Researchers are
examining closer integration of flash into existing
architectures. This has been tried in the software
level in the Microsoft Windows ReadyBoost
technology [2] and in the usage of flash as a cache
for the hard drive. [2,3]

In this paper, we analyse the effects of both
replacing secondary storage with flash storage and
placing the resulting flash storage at various levels
in the architecture. Introduction of flash into the
architecture can also lead to reduction in
complexity of the operating system, and we
speculate on these effects in this paper.

While examining the effect of introducing flash
into the architecture, we take a long term view and
1Student, Department of Computer Science, CEG
2Professor, Department of Computer Science, CEG

do not restrict ourselves to the latencies and
bandwidth available as of today. Rather, we note
the trend taken by flash and speculate on what
might be possible if flash evolves to have certain
latencies and bandwidth.

This paper examines the effects of integrating
flash at various levels in the architecture. We
begin with an analysis of previous work (Section
2). We explain the choices available in integrating
flash at various levels in existing architectures
(Section 3). We estimate the access times in each
architecture that would result from the choices
(Section 4). We propose methods for further
evaluation of some of the architectures (Section
5).

2 Related Work
The IRAM project [6] at Berkeley examined the
effects of bringing DRAM onto the chip with the
processor. Their architecture involved combining
memory and processor into a single unit and using
many of these on a single board. This approach
need not be the most efficient one when dealing
with flash. We analyse architectures other than the
IRAM to find the optimal architecture.

The many advantages of having on chip flash have
led to the question of whether main memory can
be replaced by flash. This question has been
studied in the Envy project [7]. Since then, flash
technologies have improved in terms of speed and
bandwidth. The maturing of NVRAM technology
also offers a viable alternative to SRAM/DRAM
based main memory.

The unique properties of Flash have been
examined and it has been suggested [1,2,3] that
flash could be used to act as a cache for the
secondary memory. However, we seek to replace
secondary memory itself with on-chip flash
storage.

Operating system modules have been developed to
utilize flash memory to extend the address space
of DRAM, as in the Microsoft Windows Vista
ReadyBoost feature [2]. Hard drives have been
used as main memory [8] to drive memory
intensive algorithms. This approach uses many
hard drives in parallel to achieve a memory
bandwidth comparable to DRAM bandwidth,
while allowing a large amount of memory to be
used.

Appropriateness of flash in file systems, databases
and flash specific algorithms have been studied in
great detail [4,9,10,11]. These studies concentrate
on methodologies to use flash memory in existing
architectures rather than new architectures that
could exploit the full potential of flash.

3 Design Choices
In our design, we seek to replace secondary
storage with flash technologies. Different types of
flash technologies (NAND, NOR, embedded
NOR) are available, each having different
parameters. We primarily consider NAND flash in
our design as it provides high densities. Other
flash technologies have been considered at places
where speed is very important. These flash
technologies can be integrated at a number of
places in existing architectures. We examine these
choices in Section 3.1. As a result of the
integration, we can combine some architectural
units into one, which we call the Memory
Management and Translation Unit (MMT). We
explain the MMT in Section 3.2. In section 3.3,
we examine whether main memory can be
replaced or augmented by the on-chip flash
storage.

3.1 Location of flash
Flash can be located at three places in the
architecture – on-core, on-chip and off-chip. Each
of these options has its own pros and cons. We
derive expression E1 for comparing these three
choices. Consider a pipelined architecture where B
is the transmission time for a byte of data, H is
time required to translate the logical address to
physical address and F is the latency of flash to
read a block of data. The total time required to
retrieve i instructions (TTi) will consist of three
parts: time to send the C bytes of commands

necessary to retrieve the data, time taken to
translate the logical address to physical address,
time taken to retrieve the data in the flash storage
and the time taken to transmit the D bytes of data.
Neglecting effects of main memory and cache and
adding all the above components together, we get
E1.

TTi = i*C*B + H + F + B*D (E1)

The three options can now be evaluated by
supplying different values for B,H and D.
Keeping the flash on core will decrease B.
However, placing the flash storage on-core limits
the sharing of data and instructions among the
cores. Programs which require no sharing of data
among cores will benefit from on-core flash
architectures. Similar arguments can be made for
keeping the flash on chip or off chip. Further
evaluation is required to find whether the
advantage of lesser transmission latency is
outweighed by the disadvantage of reduced
sharing.

3.2 Memory Management and
Translation Unit

One of the drawbacks of Flash storage is that a
block must be erased before being written. Since
the erase latency of flash is about 2 ms [14],
efficient flash algorithms have been designed
which allow blocks to be pre-erased and later to be
used in place of the blocks to be rewritten. These
algorithms necessitate translation between the
block addresses supplied by the user and the
physical block where the data is stored, and these
translations are typically stored hierarchically in
the flash drive. However, even with efficient

Translation

Memory Management

CPU / Cache

Flash Storage

Figure 1 – Position of MMT in the
architecture

algorithms, on average, for a 1 GB flash storage,
four levels of translations are needed. These
translations will incur writes and reads as well.

The Memory Management and Translation Unit
(MMT) combines the conversion of logical
addresses into physical address with memory
management by using hashing internally for the
conversion. The MMT can be implemented using
SRAM/DRAM. The position of MMT is shown in
Figure 1. The MMT can provide a very large
logical address space, allowing us to provide
segmentation. Upon request for lookup for a
logical address, if the logical address has not yet
been used, the MMT simply allocates a new block
for that address, saves the translation and returns
the physical block address. Thus memory
management becomes much easier, and is handled
almost fully in the hardware.

Consider a program with P instruction executions,
with R percentage of instructions being reads and
W percentage of instructions being writes. Let l be
the no of hierarchical levels needed for translation.
Let r be the read latency of flash. Let c be the
lookups needed in the hash table. If no instructions
are executed in parallel, the time required for
reads is the total of time required for translation
and time for actual reading of data.

Read time = P*R*((l+1)r) [No MMT] (E2)
Read time = P*R*(cH+r) [with MMT] (E3)

Let μ be the time required to writing a block of
data – this consists of the time required to obtain
address of a free block, write it and update the free
list. The time required for writes would be the sum
of times required for translating the address, time
required for writing the data, and time required for
updating the hierarchy.

Write time = P*W*(lr+(l+1)*μ)[No MMT] (E4)
Write time = P*W*(2*cH+w) [with MMT](E5)

If the cost of hashing becomes too high, the
translation can be done directly, with a one-to-one
mapping of each logical address to physical
address. This reduces c to one, at the cost of losing
the large logical address space of the MMT.

3.3 Main Memory
Main memory has been conventionally
implemented using SRAM/DRAM. The read
times of these technologies is very less compared
to NAND flash [14]. Moreover, the read and write
times of flash are not symmetrical – flash writes
are about ten times slower than reads. Judging by
these speeds, one would conclude that flash is not
fast enough to replace main memory.

However, there are some advantages to having
flash as both main and secondary memory.
Typical program execution involves fetching the
instruction into memory, and then executing it.

Total time = Time to shift instructions to main
memory + Time to read instructions from main
memory (E6)

However, a large part of the execution time of
instructions is spent on a small subset of the
instructions – the rest of the instructions are
executed very few times. The first component of
E6 will reduce if both main memory and
secondary memory were combined with flash,
since there would be no unnecessary shifting of
instructions between main memory and hard
drives. The second component of E6 is where
flash slows down in comparison to
SRAM/DRAM. However, with emerging trend of
parallel execution, the second part of the equation
becomes less perceivable to the user. Hence flash
may be a viable alternative to main memory.

4 Estimation of access times
We have obtained rough estimates of the access
times for the architectures explained in the
previous section. The access latencies on flash
vary from 80 ns [7] to 25 microseconds [14] for
read, and upto 200 microseconds for write,
depending on the type of flash used. Apart from
the access latencies (during which period the flash
module remains busy but other modules can
function), the total delay experienced is
constituted by:
• the transmission time required for moving

control words and data
• the time required to latch the control words

and

• the time required for block remapping
algorithms.

In our estimation, we ignore the time required for
block remapping techniques, as most algorithms
such as periodic garbage collection, can be run in
the background during periods of inactivity. We
also ignore the time required to latch the control
words.

We use the expressions mentioned in the previous
sections to plot the variation of total access times
with flash latency. Figure 2 is obtained when we
consider programs that are not executed
concurrently. We obtain Figure 3 by considering
programs with concurrent execution.

In Figure 2, each line denotes the access times
obtained for different ratios of reads and writes.
We assume that there are 10000 instruction
executions (P), the latency for translation (H) is 10
ns and 2 lookups are needed in the MMT for the
translation. We assume that the write latency for
flash is 10 times the read latency. For a program
of about 1000 instructions, with 10000 instruction
executions, read ratio 5% and write ratio 0.2%, the
latency with a hard drive storage and main
memory is comparable to our flash architecture
with access times of about a microsecond for read.
However, for large programs, it is comparable
only if the flash latency is about 100 ns. This is the
worst case scenario, and for programs which are
not parallel or incur a lot of pipeline stalls, the
development of faster flash technologies will play
a major role.

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

10 100 1000 10000 100000

r (ns)

tim
e

(n
s) R=0.5,W=0.2
R=0.05,W=0.02
R=0.05,W=0.002

Figure 2 – Total Access times vs. Latency
However, for programs that are highly concurrent
or can be executed without pipeline stalls, figure 3
shows that the flash latency does not play a major
role in the delay experienced by the user, and for
large programs, the delay is comparable to ones in
the current architecture. Here, we assume that 5

bytes of command (C) and 4 bytes of data (D) are
transmitted and translation latency (H) is 10 ns.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 10 100

Bus Latency(ns)

To
ta

l A
cc

es
s

Ti
m

e(
ns

)

F=250000 ns
F=25000 ns
F=1000 ns

Figure 3 – Total Access times vs. Bus latency
The different bars denote the access time obtained
when the flash latency is varied, keeping the bus
latency constant. The transmission latencies
incurred play a large role in the delay experienced
by the user.

Programs having a large amount of concurrency,
such as database programs and server programs
[5,11] would benefit from having flash on-chip as
a replacement for main memory.

5 Further Evaluation
The architectures proposed in this paper need to be
further evaluated. This can be carried out using
simulation tools such as OpenSparc. For multi-
core architectures, the MMT unit can be added as
an extra core, as shown in Figure 4. The caches
will interface to main memory, and to the MMT.
The MMT will also have DMA capabilities, and
will be responsible for transfer of data between
flash storage and main memory.

The user can specify the instructions that are
executed only once or twice. We propose that the
instructions that are executed at most once or

Core

Core

I
N
T
E
R
C
O
N
N
E
C
T

MMT
Unit

Cache

Cache

Cache

Figure 4 – Introduction of MMT
in Multi-core architecture

twice be read directly from flash. This will result
in saving of time required to shift the instructions
to main memory and to execute them. The rest of
the program can be transferred to main memory
and executed. With this proposed architecture, the
size of the main memory can be made smaller.
The flash storage will also be significantly more
power efficient than hard drive secondary storage.

We intend to modify OpenSparc architecture to
test our proposed architecture through simulation.
We propose to modify the operating system to:
• Integrate all memory management modules

into the MMT unit.
• Eliminate caching of secondary memory data

on main memory and associated modules.
• Change the file system to take advantage of

translations in the memory management unit
and the inherent properties of flash, similar to
[4]

We would then be able to quantify the total gains
in performance from our architecture.

6 Conclusion and Future Work
In this paper, we have analyzed and estimated the
various ways in which flash technology can be
leveraged to obtain performance gains over
existing architectures. We have also identified
changes to operating systems that can be brought
about due to the integration of flash. However,
further work needs to be done to quantitatively
evaluate these changes, and to evaluate how power
consumption is affected. It can be concluded that,
with the introduction of multi core architectures
and applications that have a large amount of
parallelism, the integration of flash into the
architecture will lead to efficient architectures.

7 References
[1] Leventhal, A. 2008. Flash storage memory.
Commun. ACM 51, 7 (Jul. 2008), 47-51.
[2] Matthews, J., Trika, S., Hensgen, D., Coulson,
R., and Grimsrud, K. 2008. Intel® Turbo
Memory: Nonvolatile disk caches in the storage
hierarchy of mainstream computer systems. Trans.
Storage 4, 2 (May. 2008), 1-24.
[3] Min, S. L. and Nam, E. H. 2006. Current
trends in flash memory technology: invited paper.

In Proceedings of the 2006 Conference on Asia
South Pacific Design Automation.
[4] Kyu-Ho Park, Seung-Ho Lim. 2006. An
Efficient NAND Flash File System for Flash
Memory Storage. IEEE Trans. Comput. 55, 7 (Jul.
2006), 906-912.
[5] Kgil, T. and Mudge, T. 2006. FlashCache: a
NAND flash memory file cache for low power
web servers. In Proceedings of the 2006
international Conference on Compilers,
Architecture and Synthesis For Embedded
Systems .
[6] Patterson, D., Anderson, T., Cardwell, N.,
Fromm, R., Keeton, K., Kozyrakis, C., Thomas,
R., and Yelick, K. 1997. A Case for Intelligent
RAM. IEEE Micro 17, 2 (Mar. 1997), 34-44.
[7] Wu, M. and Zwaenepoel, W. 1994. eNVy: a
non-volatile, main memory storage system, ACM
SIGPLAN Notices Volume 29 Issue 11, pg 86-97,
November 1994
[8] Kunkle,D. and Cooperman,G. 2008. Solving
Rubik’s Cube:Disk Is the New RAM. Commun.
ACM 51, 4 (April 2008).
[9] Gal, E. and Toledo, S. 2005. Algorithms and
data structures for flash memories. ACM Comput.
Surv. 37, 2 (Jun. 2005), 138-163.
[10] Benini, L., Macii, A., and Poncino, M. 2003.
Energy-aware design of embedded memories: A
survey of technologies, architectures, and
optimization techniques. Trans. on Embedded
Computing Sys. 2, 1 (Feb. 2003), 5-32.
[11] Lee, S., Moon, B., Park, C., Kim, J., and
Kim, S. 2008. A case for flash memory ssd in
enterprise database applications. In Proceedings of
the 2008 ACM SIGMOD international Conference
on Management of Data.
[12] Doh, I. H., Choi, J., Lee, D., and Noh, S. H.
2007. Exploiting non-volatile RAM to enhance
flash file system performance. In Proceedings of
the 7th ACM & IEEE international Conference on
Embedded Software.
[13] Oskin, M. 2008. The revolution inside the
box. Commun. ACM 51, 7 (Jul. 2008), 70-78.
[14] Inoue A., Wong D. 2003. Nand Flash
Applications Design Guide, Revision 1.0, April
2003, Toshiba America Electronic Components,
Inc.

	Design-space exploration of flash augmented architectures
	Thanumalayan S1, Vijay Chidambaram V1, Ranjani Parthasarathi2
	Abstract
	1 Introduction
	2 Related Work
	3 Design Choices
	3.1 Location of flash
	3.2 Memory Management and Translation Unit
	3.3 Main Memory
	4 Estimation of access times
	5 Further Evaluation
	6 Conclusion and Future Work
	7 References

