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Abstract
Flash technologies are rapidly improving in terms 
of  bandwidth  and  latency.  In  this  paper,  we  
consider  incorporating  flash  technologies  at  
various  levels  in  the  existing  architecture.  For 
each  level,  we  estimate  the  access  time 
considering  different  levels  of  concurrency.  We  
speculate  on  how  highly  concurrent  programs 
might benefit from the incorporation of flash into 
the  architecture.  We  aim  to  reduce  operating  
system  complexity  by  integrating  some  memory 
management  functions  with  the  proposed 
architecture.  Finally,  we  also  predict  
architectural changes that would become feasible  
if  the trend in reducing latencies and improving  
bandwidth continues. 1

1 Introduction
The development of  many-core architectures has 
shifted the focus in design of memory modules to 
high bandwidth and power efficient solutions [13] 
rather than low latency ones. In this context, Flash 
assumes a significant role, as it offers the needed 
performance  at  low  cost.  Researchers  are 
examining closer integration of flash into existing 
architectures. This has been tried in the software 
level  in  the  Microsoft  Windows  ReadyBoost 
technology [2] and in the usage of flash as a cache 
for the hard drive. [2,3]

In  this  paper,  we  analyse  the  effects  of  both 
replacing secondary storage with flash storage and 
placing the resulting flash storage at various levels 
in the architecture. Introduction of flash into the 
architecture  can  also  lead  to  reduction  in 
complexity  of  the  operating  system,  and  we 
speculate on these effects in this paper.

While  examining  the  effect  of  introducing  flash 
into the architecture, we take a long term view and 
1Student, Department of Computer Science, CEG
2Professor, Department of Computer Science, CEG

do  not  restrict  ourselves  to  the  latencies  and 
bandwidth available as of today. Rather, we note 
the  trend  taken  by  flash  and  speculate  on  what 
might be possible if flash evolves to have certain 
latencies and bandwidth.

This  paper  examines  the  effects  of  integrating 
flash  at  various  levels  in  the  architecture.  We 
begin with an analysis of previous work  (Section 
2). We explain the choices available in integrating 
flash  at  various  levels  in  existing  architectures 
(Section 3). We estimate the access times in each 
architecture  that  would  result  from  the  choices 
(Section  4).  We  propose  methods  for  further 
evaluation  of  some of  the  architectures  (Section 
5).  

2 Related Work
The IRAM project [6] at  Berkeley examined the 
effects of bringing DRAM onto the chip with the 
processor. Their architecture involved combining 
memory and processor into a single unit and using 
many of these on a single  board.  This  approach 
need not be the most  efficient one when dealing 
with flash. We analyse architectures other than the 
IRAM to find the optimal architecture.

The many advantages of having on chip flash have 
led to the question of whether main memory can 
be  replaced  by  flash.  This  question  has  been 
studied in the Envy project [7]. Since then, flash 
technologies  have improved in terms of speed and 
bandwidth. The maturing of NVRAM technology 
also offers a viable alternative to SRAM/DRAM 
based main memory. 

The  unique  properties  of  Flash  have  been 
examined and it  has  been suggested  [1,2,3]  that 
flash  could  be  used  to  act  as  a  cache  for  the 
secondary memory. However, we seek to replace 
secondary  memory  itself  with  on-chip  flash 
storage.



Operating system modules have been developed to 
utilize flash memory to extend the address space 
of  DRAM,  as  in  the  Microsoft  Windows  Vista 
ReadyBoost  feature  [2].  Hard  drives  have  been 
used  as  main  memory  [8]  to  drive  memory 
intensive  algorithms.  This  approach  uses  many 
hard  drives  in  parallel  to  achieve  a  memory 
bandwidth  comparable  to  DRAM  bandwidth, 
while allowing a large amount of memory to be 
used.

Appropriateness of flash in file systems, databases 
and flash specific algorithms have been studied in 
great detail [4,9,10,11]. These studies concentrate 
on methodologies to use flash memory in existing 
architectures  rather  than  new  architectures  that 
could exploit the full potential of flash.

3 Design Choices
In  our  design,  we  seek  to  replace  secondary 
storage with flash technologies. Different types of 
flash  technologies  (NAND,  NOR,  embedded 
NOR)  are  available,  each  having  different 
parameters. We primarily consider NAND flash in 
our  design  as  it  provides  high  densities.  Other 
flash technologies have been considered at places 
where  speed  is  very  important.  These  flash 
technologies  can  be  integrated  at  a  number  of 
places in existing architectures. We examine these 
choices  in  Section  3.1.  As  a  result  of  the 
integration,  we  can  combine  some  architectural 
units  into  one,  which  we  call  the  Memory 
Management  and  Translation  Unit  (MMT).  We 
explain the MMT in Section 3.2.  In section 3.3, 
we  examine  whether  main  memory  can  be 
replaced  or  augmented  by  the  on-chip  flash 
storage. 

3.1 Location of flash
Flash  can  be  located  at  three  places  in  the 
architecture – on-core, on-chip and off-chip. Each 
of these options has its  own pros and cons.  We 
derive  expression  E1  for  comparing  these  three 
choices. Consider a pipelined architecture where B 
is the transmission time for a byte  of data,  H is 
time  required  to  translate  the  logical  address  to 
physical  address and F is the latency of flash to 
read a block of data.  The total  time required  to 
retrieve  i  instructions  (TTi)  will  consist  of  three 
parts:  time  to  send  the  C  bytes  of  commands 

necessary  to  retrieve  the  data,  time  taken  to 
translate  the  logical  address  to  physical  address, 
time taken to retrieve the data in the flash storage 
and the time taken to transmit the D bytes of data. 
Neglecting effects of main memory and cache and 
adding all the above components together, we get 
E1.

TTi  =   i*C*B + H + F + B*D        ( E1)

The  three  options  can  now  be  evaluated  by 
supplying  different  values  for  B,H  and   D. 
Keeping  the  flash  on  core  will  decrease  B. 
However, placing the flash storage on-core limits 
the  sharing  of  data  and  instructions  among  the 
cores. Programs which require no sharing of data 
among  cores  will  benefit  from  on-core  flash 
architectures. Similar arguments can be made for 
keeping  the  flash  on  chip  or  off  chip.  Further 
evaluation  is  required  to  find   whether  the 
advantage  of  lesser  transmission  latency  is 
outweighed  by  the  disadvantage  of  reduced 
sharing.

3.2  Memory  Management  and 
Translation Unit

One of the drawbacks of  Flash storage is  that  a 
block must be erased before being written. Since 
the  erase  latency  of  flash  is  about  2  ms  [14], 
efficient  flash  algorithms  have  been  designed 
which allow blocks to be pre-erased and later to be 
used in place of the blocks to be rewritten. These 
algorithms  necessitate  translation  between  the 
block  addresses  supplied  by  the  user  and  the 
physical block where the data is stored, and these 
translations  are  typically  stored  hierarchically  in 
the  flash  drive.  However,  even  with  efficient 
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algorithms, on average, for a 1 GB flash storage, 
four  levels  of  translations  are  needed.  These 
translations will incur writes and reads as well.

The  Memory Management and Translation Unit 
(MMT)  combines  the  conversion  of  logical 
addresses  into  physical  address  with  memory 
management  by using  hashing  internally for  the 
conversion. The MMT can be implemented using 
SRAM/DRAM. The position of MMT is shown in 
Figure  1.  The  MMT  can  provide  a  very  large 
logical  address  space,  allowing  us  to  provide 
segmentation.  Upon  request  for  lookup  for  a 
logical address, if the logical address has not yet 
been used, the MMT simply allocates a new block 
for that address, saves the translation and returns 
the  physical  block  address.  Thus  memory 
management becomes much easier, and is handled 
almost fully in the hardware. 

Consider a program with P instruction executions, 
with R percentage of instructions being reads and 
W percentage of instructions being writes. Let l be 
the no of hierarchical levels needed for translation. 
Let  r  be the  read latency of flash.  Let  c  be the 
lookups needed in the hash table. If no instructions 
are  executed  in  parallel,  the  time  required  for 
reads is the total of time required for translation 
and time for actual reading of data.  

Read time = P*R*((l+1)r) [ No MMT   ]      (E2)
Read time = P*R*(cH+r)  [ with MMT ]      (E3)

Let  μ  be the time required to writing a block of 
data – this consists of the time required to obtain 
address of a free block, write it and update the free 
list. The time required for writes would be the sum 
of times required for translating the address, time 
required for writing the data, and time required for 
updating the hierarchy. 

Write time = P*W*(lr+(l+1)*μ)[No MMT] (E4)
Write time = P*W*( 2*cH+w ) [with MMT](E5)

If  the  cost  of  hashing  becomes  too  high,  the 
translation can be done directly, with a one-to-one 
mapping  of  each  logical  address  to  physical 
address. This reduces c to one, at the cost of losing 
the large logical address space of the MMT.

3.3 Main Memory
Main  memory  has  been  conventionally 
implemented  using  SRAM/DRAM.  The  read 
times of these technologies is very less compared 
to NAND flash [14]. Moreover, the read and write 
times of flash are not symmetrical  – flash writes 
are about ten times slower than reads. Judging by 
these speeds, one would conclude that flash is not 
fast enough to replace main memory.

However,  there  are  some  advantages  to  having 
flash  as  both  main  and  secondary  memory. 
Typical  program execution involves  fetching the 
instruction into memory, and then executing it. 

Total  time  = Time to  shift  instructions  to  main  
memory + Time to  read instructions  from main 
memory                                                          (E6)

However,  a  large  part  of  the  execution  time  of 
instructions  is  spent  on  a  small  subset  of  the 
instructions  –  the  rest  of  the  instructions  are 
executed very few times. The first component of 
E6  will  reduce  if  both  main  memory  and 
secondary  memory  were  combined  with  flash, 
since there  would be no unnecessary shifting of 
instructions  between  main  memory  and  hard 
drives.  The  second  component  of  E6  is  where 
flash  slows  down  in  comparison  to 
SRAM/DRAM. However, with emerging trend of 
parallel execution, the second part of the equation 
becomes less perceivable to the user. Hence flash 
may be a viable alternative to main memory.

4 Estimation of access times
We have obtained rough estimates of the access 
times  for  the  architectures  explained  in  the 
previous  section.  The  access  latencies  on  flash 
vary from 80 ns [7] to 25 microseconds [14] for 
read,  and  upto  200  microseconds  for  write, 
depending on the type of flash used. Apart  from 
the access latencies (during which period the flash 
module  remains  busy  but  other  modules  can 
function),  the  total  delay  experienced   is 
constituted by:
• the  transmission  time  required  for  moving 

control words and data
• the  time required to  latch  the  control  words 

and 



• the  time  required  for  block  remapping 
algorithms.

In our estimation, we ignore the time required for 
block remapping  techniques,  as  most  algorithms 
such as periodic garbage collection, can be run in 
the background during periods  of  inactivity. We 
also ignore the time required to latch the control 
words.

We use the expressions mentioned in the previous 
sections to plot the variation of total access times 
with flash latency. Figure 2 is obtained when we 
consider  programs  that  are  not  executed 
concurrently.  We obtain Figure 3 by considering 
programs with concurrent execution.

In  Figure  2,  each  line  denotes  the  access  times 
obtained for  different  ratios  of  reads and writes. 
We  assume  that  there  are  10000  instruction 
executions (P), the latency for translation (H) is 10 
ns and 2 lookups are needed in the MMT for the 
translation. We assume that the write latency for 
flash is 10 times the read latency. For a program 
of about 1000 instructions, with 10000 instruction 
executions, read ratio 5% and write ratio 0.2%, the 
latency  with  a  hard  drive  storage  and  main 
memory  is  comparable  to  our  flash  architecture 
with access times of about a microsecond for read. 
However,  for  large  programs,  it  is  comparable 
only if the flash latency is about 100 ns. This is the 
worst case scenario, and for programs which are 
not  parallel  or  incur  a  lot  of  pipeline  stalls,  the 
development of faster flash technologies will play 
a major role. 
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Figure 2 – Total Access times vs. Latency
However, for programs that are highly concurrent 
or can be executed without pipeline stalls, figure 3 
shows that the flash latency does not play a major 
role in the delay experienced by the user, and for 
large programs, the delay is comparable to ones in 
the current  architecture.  Here,  we assume that  5 

bytes of command (C) and 4 bytes of data (D) are 
transmitted and translation latency (H) is 10 ns.
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Figure 3 – Total Access times vs. Bus latency
The different bars denote the access time obtained 
when the flash latency is varied, keeping the bus 
latency  constant.  The  transmission  latencies 
incurred play a large role in the delay experienced 
by the user.

Programs having a large amount of concurrency, 
such  as  database  programs and  server  programs 
[5,11] would benefit from having flash on-chip as 
a replacement for main memory.

5 Further Evaluation
The architectures proposed in this paper need to be 
further  evaluated.  This  can  be  carried  out  using 
simulation  tools  such  as  OpenSparc.  For  multi-
core architectures, the MMT unit can be added as 
an extra core, as shown in Figure 4. The caches 
will interface to main memory,  and to the MMT. 
The MMT will also have DMA capabilities, and 
will  be  responsible  for  transfer  of  data  between 
flash  storage  and  main  memory.

The  user  can  specify  the  instructions  that  are 
executed only once or twice. We propose that the 
instructions  that  are  executed  at  most  once  or 
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twice be read directly from flash. This will result 
in saving of time required to shift the instructions 
to main memory and to execute them. The rest of 
the program can be transferred to main  memory 
and executed. With this proposed architecture, the 
size  of  the  main  memory  can  be  made  smaller. 
The flash storage will also be significantly more 
power efficient than hard drive secondary storage.

We intend  to  modify  OpenSparc  architecture  to 
test our proposed architecture through simulation. 
We propose to modify the operating system to:
• Integrate  all  memory  management  modules 

into the MMT unit.
• Eliminate caching of secondary memory data 

on main memory and associated modules.
• Change the file  system to take advantage of 

translations in the memory management  unit 
and the inherent properties of flash, similar to 
[4]

We would then be able to quantify the total gains 
in performance from our architecture.

6 Conclusion and Future Work
In this paper, we have analyzed and estimated the 
various  ways  in  which  flash  technology can  be 
leveraged  to  obtain  performance  gains  over 
existing  architectures.  We  have  also  identified 
changes to operating systems that can be brought 
about  due  to  the  integration  of  flash.  However, 
further  work  needs  to  be  done  to  quantitatively 
evaluate these changes, and to evaluate how power 
consumption is affected. It can be concluded that, 
with  the  introduction of  multi  core  architectures 
and  applications  that  have  a  large  amount  of 
parallelism,  the  integration  of  flash  into  the 
architecture will lead to efficient architectures. 
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