
Fault Tolerance in Multicore Processors
With Reconfigurable Hardware Unit

Rajesh S, Vinoth Kumar C, Srivatsan R, Harini S and A.P. Shanthi
Department of Computer Science & Engineering,

College of Engineering Guindy, Anna University, Chennai, India

Abstract - The present day systems are in need
of high level of fault tolerance in the Multicore
processors without substantial loss of overall
performance. The commodity processors that
are available now have handled mainly soft
errors (transient errors) and a very small amount
of work is done for handling hard faults. In this
paper we propose to include a Reconfigurable
Hardware Unit (RHU) inside the core which can
detect and isolate the faults in the functional
units inside a core using stored test patterns.
Once the faulty unit is isolated, a part of the
RHU is reconfigured by loading stored
configuration to perform the functions of the
faulty unit and the register values of the faulty
unit is forwarded to the reconfigured RHU. The
test patterns and configurations should be stored
in fast access non-volatile storage devices such
as flash memory. This improved architecture will
help to solve many fault tolerance issues with no
visible loss of performance at low cost and
space.

Key Words - Multicore, CMP, Reconfigurable
Hardware Unit, Test Patterns.

1. Introduction

The number of cores in a die is increasing at a
high rate; subsequently, the functional units are
shrinking,making it more susceptible to
hardware errors. Permanent or intermittent
hardware faults, caused by defects in the silicon
or metallization of process package and wear out

over time, lead to “hard faults”. Transient faults
(or “soft errors”), which cause random bit values
to change erroneously, may be caused by
electrical noise (e.g., crosstalk) or external
radiation (e.g., alpha radiation from impurities).

At present most of the commodity CMPs have
handled many of the soft errors that can occur
inside a core. But handling hard faults is a
tedious task. Replication of each of the
functional units is not cost and space friendly.
Even if we replicate, the complete utilization of
all the functional units is not possible. The
improvements in the field of Reconfigurable
Computing could help us solve the fault
tolerance issues.

Reconfigurable Computing is getting more and
more important in the (embedded) computing
world. Field Programmable Gate Arrays
(FPGAs), Field Programmable Transistor Arrays
(FPTAs) and Complex Programmable Logic
Devices (CPLDs) are used as building blocks for
reconfigurable computing. Designing
architectures for (embedded) computer systems
using reconfigurable hardware is becoming more
popular, now that classical drawbacks are
diminishing.
1

This is mostly because of the speed/flexibility
trade-off which holds in architectural design.

1 Student Author:Rajesh S,Vinoth Kumar C,Srivatsan
R,Harini S.

With the use of reconfigurable hardware, one
tries to fill the gap between a hardware-only
(Application Specific Integrated Circuit-ASIC)
and a software-only (General Purpose
Processors-GPP) solution [8]. It is intended to
achieve a higher performance than a software-
only solution, and maintain more flexibility than
a hardware-only solution.

The effectiveness of reconfigurable computing
in a general purpose, high performance
processor as in a Multicore processor has not yet
been evaluated. We propose to integrate a
reconfigurable hardware unit inside a core. The
RHU, without disturbing the normal
functionalities of the core, tests the functional
units for faults which can take place in a round-
robin or event driven manner, and identifies the
exact location of the fault. When a fault is
identified, the RHU is reconfigured to take over
the functions of the faulty unit. Thus, tolerance
in many of the functional units inside a core can
be achieved.

2. Related Work

Contemporary processors like the UltraSPARC
T1, which are manufactured on cutting-edge
process technology, are especially prone to soft
errors. With this problem in mind, Sun
systematically designed the UltraSPARC T1
processor with the appropriate level of
protection of its on-chip memories. In general,
the UltraSPARC T1 processor protects memory
arrays with either Single Error Correction /
Double Error Detection (SEC/DED) or parity
protection. Redundant arrays are protected with
parity, while non-redundant arrays are protected
with ECC (Error Correcting Code). Table 1 lists
the UltraSPARC T1 processor’s on-chip
memories and its corresponding protection
mechanism.

TABLE 1 :On -Chip Memory Protection
Memory Array Protection

Integer Register File ECC
Floating Point Register
File

ECC

L1 Instruction Cache- Parity/retry

Data
L1 Instruction Cache –
Tag

Parity/retry

Instruction TLB Parity/retry
Data TLB Parity/retry
L1 Data Cache – Data Parity/retry
L1 Data Cache – Tag Parity/retry
L2 Cache – Data ECC
L2 Cache –Tag ECC
L2 Cache Scrubber Yes

The UltraSPARC T1 processor’s Chipkill
mechanism1 can correct any error contained
within a single memory nibble (4 bits), and
detect any uncorrectable errors contained within
any two nibbles. Another mechanism
implemented in the UltraSPARC T1 processor
to ensure main memory reliability is memory
scrubbing. Each of the UltraSPARC T1
processor’s four memory controllers has a
background error scanner/scrubber to reduce the
incidence of multi-nibble errors. At the
International Reliability Physics Symposium1,
Sun showed that implementing power and
thermal management features can dramatically
increase both the lifetime and reliability of the
device by up to 24 times while maintaining or
improving device performance.

Li et al. [1] have proposed a method (CASP) for
autonomous testing of cores in Multicore
environment by adding a hardware unit. CASP is
a special kind of self test where a system tests
itself concurrently during normal operation
without any downtime visible to the end-user.
The basic idea is to store very thorough test
patterns in non-volatile storage, such as hard
disks or FLASH memory, and provide
architectural and system-level support for testing
one or more cores in a multi-core system, while
the rest of the system continues to operate
normally.

ARGUS [3] exploits the fact that the core
performs only four basic operations, choosing
the sequence of instructions to execute (control
flow), performing the computation specified by
each instruction, passing the result of each
instruction to its data-dependent instructions
(data flow), and interacting with memory. By

checking all these activities most of the errors
that can occur inside a core can be detected.

Bower et al. [4] have proposed a DIVA checker
that detects an error in an instruction and
increments a small saturating error counter for
every field deconfigurable unit (FDU) used by
that instruction, including the DIVA checker. A
hard fault in an FDU quickly leads to an above-
threshold error counter for that FDU and thus
diagnoses the fault.

Bell et al. [6] have proposed that redundant
execution on chip multiprocessors helps in
detecting the faults with no major impact on
performance. Errors can be detected by
buffering retired stores in a store comparator
queue where they are compared to identical
stores executed on a second thread. If a
mismatch is detected in either a store’s data or
address, an error is signaled to the processor so
that it can respond appropriately.

3. Existing Problems

The present transient fault detection is limited to
storage arrays such as register files, cache and
memory arrays. It is implemented now using
certain registers which maintains the parity
information which can be used to detect the
errors.

None of the current generation CMPs can
tolerate errors in the associated cache circuitry
or interconnect. . For example, if all L2 cache
banks are shared, and addresses are interleaved
among the banks, a transient failure in the cache
controller state machine could lead to erroneous
setting of a coherence bit. Note that ECC on the
coherence state bit would not prevent this error
because the fault is in the cache controller logic
and not the actual coherence bit. Such an error
could affect an entire socket.

There is no fault isolation in Opteron, Xeon and
Niagara; an error originating in any core can
propagate to all the other cores through the
shared system components. For example, if the
L2 cache is shared among various cores, then

any error in the cache controller will affect all
the cores that share these caches. Thus, any fault
in shared resources is difficult to isolate.

All the architectures have sophisticated
techniques like chip kill, background scrubbing,
and DIMM sparing to tolerate failures’ here is
no tolerance to failures in memory access
control circuitry. A failure in any memory
controller or anywhere in the interconnect would
affect all the cores.

4. Proposed Solutions

The RHU which is integrated into the core has
the following functions - Detection, Isolation
and correction.

The Testing unit configured in the RHU can
function as Signal Tracker or Control Flow or
Data Flow or Computation Checker. Testing can
be done in event-driven and round-robin fashion.

The signals that are generated in the core are
monitored for a while and if any abnormal
pattern of signals is identified, a tester is
configured in the RHU which tests the core for
faults. When a particular unit is under testing,
the RHU is configured to perform the functions
of the unit under test. This helps us to test each
functional unit without disturbing the normal
operations of the core. When the testing is
completed, the functions are again transferred to
the original unit.

While testing, the RHU can be configured as a
control flow checker that periodically verifies
that the runtime execution path is valid with
respect to the static control flow graph (CFG) of
the program binary. If the static and dynamic
CFGs conflict, an error is detected which implies
the core has a faulty unit.
The faulty unit can be isolated by testing the
core using stored test patterns in non-volatile
storage. This requires a test controller and on-
chip buffer for scheduling the self-test in the
processor core. The basic idea is to store very
thorough test patterns in non-volatile storage,
such as hard disks or FLASH memory.

 The test controller will
 1. Fetch test patterns from the off-chip non-
volatile storage to the on-chip buffer.
 2. Initiate proper pre-processing of a core before
it enters test mode.
3. Perform scan test of the selected processor
core with test mode and test clock control
signals.
4.Identify the faulty unit in the core.

The configuration of each of the functional units
is stored in FLASH memory. When a faulty unit
is isolated, the configuration of that unit is
loaded into the RHU and this reconfigured unit
takes over the functions of the faulty unit. This
process helps the core to recover from serious
faults with minimal delay.

The values of the registers of the faulty unit has
to be transferred to the reconfigured unit .This
can be done by including pseudo instructions
which transfers the registers of faulty unit to
RHU.

5. Proposed Implementation

The Reconfigurable Hardware Unit can be
implemented using FPGA (Field Programmable
Gate Array) or CPLD (Complex Programmable
Logic Devices). FPGA is more flexible and
efficient compared to CPLD.

Xilinx Virtex is a commercially available FPGA
device. The code of a single core of
OpenSPARC can be downloaded into Xilinx
Virtex and a flash memory should be attached.
The flash memory should be in such a way it can
also be shared among other cores when used in a
Multicore environment.

Sun’s OpenSparcT1 architecture is used for the
implementation of the proposed work as it
provides various open source tool's support to
simulate the design.A High level VHDL model
for the testing, isolation and correction units is
generated. The logic is partitioned. Each part
was re-described in a lower level description
(RTL) required for the circuit synthesis,
optimization and mapping to the specific
technology by assigning current FPGA family
and device. The resulting optimized circuit

description was verified through extensive
simulation after which the layout was created
(Layout synthesis) and finally, on chip
verification was executed by using C++
programming to connect PCI bus to the design
ports and to test the design.

5.1 Architecture Diagram

Architectural features of the proposed work
include
1.Support for stalling and draining the
pipeline,invalidating the cache,2.Support for
restoring states and enabling
communication.These architectural features can
be introduced to OpenSparc T1 with moderate
design effort as they are supported by the
OpenSparcT1.
Sun’s OpenSparc Architecture have eight cores
and main functional units of a core are shown in
the Fig.2.We propose to include a RHU unit into
each of the cores of the OpenSPARC and a flash
memory which can be shared by all the cores.
(The included units are shown by dotted circle in
a core in Fig.2.). The RHU should be able to
meet the space constraints on the core. The flash
memory is used to store test patterns and
configurations so that the reconfiguration
latency is minimum.

Fig.2. Proposed Architecture

In future the faults in RHU should also be
identified by self-test mechanism and the
identified faulty component must not be used for
later purposes. We should also handle error
propagation between cores due to faults in
shared resources.

6. Conclusion & Future Work

As the size of the functional units decreases the
number of faults that can occur in a core
increases drastically. This makes the need for
fault tolerant systems more important. We have
proposed to utilize the power and flexibility of
RHU to bring in fault tolerance in the core at
unit level. Our system tests the core at unit level
and replaces the faulty component with minimal
reconfiguration latency. Thus, the reliability of
the processors increases in exchange to some
additional cost and space inside the core.

References:

[1] [Yanjing 08] Yanjing Li,Samy
Makar,Subhasish Mitra ,”CASP: Concurrent
Autonomous Chip Self-Test Using Stored Test
Patterns”, Design Automation and Test in
Europe ,2008.
[2] [Sumit 06] Sumit Dharampal
Mediratta,Jeffrey Draper,”Achieving On-chip
Fault-tolerance Utilizing BIST Resources
“,Proceedings of the 5th WSEAS International
Conference on Circuits, Systems, Electronics,
Control & Signal Processing ,2006.
[3] [Meixner 07] Albert Meixner
Michael E. Bauer Daniel J. Sorin, “ARGUS:
Low-cost,comprehensive error detection in
simple cores”,IEEE,2007.
[4] [Bower 05] Fred A. Bower1,3,
Daniel J. Sorin2, and Sule Ozev2,”A Mechanism
for Online Diagnosis of Hard Faults in
Microprocessors”, International Symposium on
Microarchitecture ,2005.
[5] [Osamah 07] Dr. Osamah A.
Rawashdeh,“A Reconfigurable Architecture for
Fault-Tolerant Distributed Embedded Systems”,
EURASIP Journal on Embedded Systems,2007.
[6] [Bell 07] Gordon B. Bell, Mikko
H. Lipasti, ”Achieving Fault Detection and

Performance on CMPs”, ACM Computing
Surveys (CSUR) ,2007.
[7] [Compton 02] K.Compton and
S.Hauck , ”Reconfigurable Computing: A
survey ofsystems and software”, ACM
Computing Surveys (CSUR),2002.
[8] [Sellers 68] F. F. Sellers et al. Error
Detecting Logic for Digital Computers. McGraw
Hill Book company, ACM Computing Surveys
(CSUR),1968.
[9] [Aggarwal 07] Nidhi Aggarwal,
Parthasarathy Ranganathan, Norman P.
Jouppi,James E. Smith, Kewal K. Saluja, and
George Krejci,”Motivating Commodity Multi-
Core Processor Design for System-level Error
Protection”,2007.
[10] [Aggarwal07]Nidhi Aggarwal
,Parthasarathy Ranganathan,James E. Smith,”
Configurable Isolation: Building High
Availability Systems with Commodity Multi-
Core Processors”,2007.

	Fault Tolerance in Multicore Processors With Reconfigurable Hardware Unit

