
Exploring Software Cache on the Cell BE Processor

Ganapathy Senthil, Sasikanth Gudla∗, Pallav Kumar Baruah∗∗

Sri Sathya Sai University
Prasanthi Nilayam - 515134, Andhra Pradesh, India

{∗sasikanthgudla,∗∗ baruahpk}@gmail.com

Abstract

Software Cache promises to increase programma-
bility and performance in certain applications
such as those with irregular memory references
on multi-core architectures like the cell processor
where on chip memory is a precious resource.
We discuss the need for software cache, design
and implementation of a simple software cache
on the Cell Broadband Engine. We present the
performance of a histogram application using the
software cache. We propose a static analysis
tool that takes memory references generated by
a given application and gives the optimal cache
parameters that can be used to configure the soft-
ware cache for the application to run on the Cell
Broadband Engine. We also present the results
of analysis done with this tool for the trace gen-
erated by a heap sort application

1 Introduction

Multi-core architectures are here to stay. Het-
erogeneous architectures like the Cell Processor
have constraints in the amount of on chip mem-
ory available for them. The SPUs in the Cell
processor are equipped with 256 KB Local stor-
age memory. The programmer generally does
a DMA for the SPUs to access memory. Nor-
mally cyclic buffering is used to hide the DMA
latency thus overlapping computation with com-
munication. However in applications such as
those with irregular memory references this may

∗student author: Sasikanth Gudla

become very difficult. Software Cache can be
useful both in terms of increased programmabil-
ity and increased performance in such scenarios.

1.1 Need for Software cache

Consider the following code to be executed by
the SPU

for(i = 0; i < 100000; ++i)
a[i] = b[i] + c[i] * d[f(i)];

In this case, b and c can be prefetched, but the
access pattern in d cannot be predicted. d[f(i)]
must be fetched on each iteration, resulting in a
huge slow-down of the loop. Every access to d
requires a high-latency access to main memory.
While the SPEs have no hardware cache, it is
possible to implement a small software cache by
explicitly referring to it. For instance, the above
example can be implemented as follows:

for(i = 0; i < 100000; ++i) {
t = cache lookup(d[f(i)]);
a[i] = b[i] + c[i] * t;

}

A sample implementation of cache lookup
might look like this:

inlinevector cache lookup(addr) {
/* fetch the value if we haven’t got it already */

if (cache directory[addr&key mask] != (addr&tag mask))
miss handler(addr)
/* return the value */

return cache data[addr&key mask][addr&offset mask];
}

1



1.2 Issues and Challenges

The software cache functions add some com-
putation overhead compared to ordinary DMA
data transfers and therefore ordinary DMA
transfer is preferable in case the data access
pattern is sequential [1], [4]. The two challenges
in using the Software Cache effectively would be:

• The amount of space occupied by the soft-
ware cache should be as minimum as possi-
ble as the local storage is a precious resource
for the SPU

• For the Software Cache to be of useful in
terms of performance, the cycles lost in
lookup and other bookkeeping work should
be more than compensated by the cycles
gained by ensuring that required cache line
is almost all the time present in the cache

1.3 Advantages

Software Cache has the following advantages:

• Better performance in some applications
owing to the principle of locality of refer-
ence by saving redundant data transfers if
the corresponding data is already in the Lo-
cal Storage.

• Reconfigurable Topology and behavior
which implies that it can be easily optimized
to match data access patterns (unlike most
hardware caches).

2 Design and Implementation
of our Software Cache

We implement the software cache, using CELL
SDK 2.1, in essentially four modules:

1. cache init:
This module receives various user parame-
ters like cache size, cache line size, and set
size, computes bits required for line offset,
set index and comparand.

2. cache lookup:
This module takes the effective as an argu-
ment and extracts tag, line offset, set index.
It uses these parameters to index into the
cache to find a match. It returns the corre-
sponding LS address if it finds a match else
calls the cache miss handler.

3. cache miss handler:
This module first selects a line to be evicted
using the Round robin strategy, queues a
DMA to flush the line if the dirty and valid
bits are set and queues another DMA to
fetch the required line. Fenced DMA is used
to maintain consistency of the data.

4. cache flush:
This module runs in a loop through the
cache data array and queues a DMA to the
flush the cache line to main memory if , if
the valid and the dirty bits are set.

2.1 Software cache in Cell SDK 3.0

In this section we briefly discuss the software
cache provided by the IBM SDK 3.0 The IBM
Cell SDK 3.0 provides a software cache as a
macro implemented library which can be used
by application programmers in two modes,
a synchronous mode and an asynchronous
mode[1]. The software cache can be configured
based on Associativity, Access mode (Read-only
or read-write), Cache line size, Number of lines,
Data type.

The synchronous mode (or safe mode) pro-
vides the programmer with a set of functions to
access data simply by using the datas effective
address. The software cache library performs
the data transfer between the LS and the main
memory transparently to the programmer and
manages the data that is already in the LS.

The asynchronous interface (or unsafe mode)
enables the programmer to hide the memory
access latency by overlapping data transfer
and computation. This mode provides a more

2



efficient means of accessing the LS compared
to the safe mode. The software cache provides
functions to map effective addresses to the LS
addresses. The programmer should use those
LS addresses later to access the data, unlike in
safe mode where the effective addresses are used.

There is also a provision to define multiple
caches, each configured differently to suit the
needs of the programmer.

3 Performances and Results

We used the Histogram application to study the
performance of our implementation of the soft-
ware cache. A given gray scale image has pixels
each assigned a gray level from 0-255. The his-
togram of an image is an array of 256 elements
where each element gives the frequency of occur-
rence of the gray value in the image. In order to
construct the histogram the algorithm traverses
the image linearly and for each pixel increments
the value of the element in the histogram ar-
ray corresponding to the gray level of the pixel.
Figure 1 shows that hit ratio increases almost
linearly as cache size increases since histogram
calculation is localized and also large cache size
leads to less cache line replacements.

Figure 1: Cache Hit ratio of Histogram Ap-
plication with various cache sizes

Figure 2 reiterates the point that as cache size
increases time taken by application decreases,
but ideal cache size depends on the size of ap-
plication code because Local Storage is a very
precious resource for the SPE.

Figure 2: Timing of Histogram Application
with different Cache sizes

4 Analysis Tool

As mentioned in the introduction the software
cache can be configured based on parameters
like line size, cache size, associativity, data type
and access mode. We propose an utility tool
that determines the optimal cache parameters
that should be used to configure the cache for
better performance for a given application. We
first generate the memory access trace for an
application by adding print statements in the
code and writing the references on to a file.
This file forms the input to the utility tool
which would then evaluate the optimal cache
parameters based on various factors like:

• The frequency of reference of a given cache
line

• The access stride for a cache line which is
the number of lines referenced between two
successive references of a given cache line

3



• A comparative analysis of these metrics for
different configurations of the cache thus
enabling the user to make a best possible
choice for a given application and a given
input size of the application

We intend to take various applications, obtain
the memory access traces and run the utility tool
to obtain quantitative results in terms of perfor-
mance gains with the insights provided by the
tool. The tool could also provide valuable infor-
mation regarding the memory access patterns of
various applications.
Here we present the results of analysis done with
the trace of heap sort application provided by
the IBM SDK 3.0, which sorts a set of floating
point numbers using the heap sort algorithm.
The input could be given from a file or gener-
ated randomly by the heap sort application it-
self. We have obtained traces for various input
sizes where input size corresponds to the number
of floating point numbers being sorted. We then
used the analysis tool to obtain graphs corre-
sponding to frequency of references vs Line Num-
ber in the Effective Address space. The Line
Number in the Effective Address space of a given
memory reference corresponds to the Effective
Address divided by the intended cache line size.
The four graphs correspond to intended cache
line sizes of 128 Bytes, 256 Bytes, 512 Bytes and
1024 Bytes. The graphs show that only the first
few lines are referenced very frequently and there
is a sharp decline in the number of references.
Also, a longer Cache line size results in better
performance for this heap sort application.

5 Conclusions and Future
Work

The analysis tool proposed is a precursor to
a novel implementation of the software cache.
Software cache has an advantage over hardware
cache that it is highly reconfigurable, flexible in
implementation. We intend to extend the idea
of configuring the cache based on the memory

Figure 3: Plot of No.of References vs Line
No. for the Heap sort application, Cache
Line Size is 128 Bytes

Figure 4: Plot of No.of References vs Line
No. for the Heap sort application, Cache
Line Size is 256 Bytes

access patterns to implement a cache based on

4



Figure 5: Plot of No.of References vs Line
No. for the Heap sort application, Cache
Line Size is 512 Bytes

Figure 6: Plot of No.of References vs Line
No. for the Heap sort application, Cache
Line Size is 1024 Bytes

the usage of the cache lines. Since, we are not re-

stricted by hardware limitations and we need not
stick to the traditional view of cache. Instead we
can implement the cache purely based on access
patterns and thereby substantially improve the
cache performance. We also intend to study var-
ious applications’ performance based on our im-
plementation of the Software Cache for the Cell
Processor.

References

[1] Programming the Cell Broadband Engine
Architecture Examples and Best Practices:
www.redbooks.ibm.com/redbooks/pdfs/sg247575.pdf

[2] Jairo Balart , Marc Gonzalez, Xavier Mar-
torel, Eduard Ayguade, Zehra Sura, Tong
Chen, Tao Zhang, Kevin Obrien, Kathryn
Obrien: A Novel Asynchronous Software
Cache Implementation for the Cell-BE Pro-
cessor: Proceedings of the 2007 Workshop
on Languages and compilers for Parallel
Computing, pages 125-140, 2007

[3] Jie Tao, Siegfried Schloissnig, and Wolf-
gang Karl: Analysis of Spatial and Tem-
poral Locality in Data Accesses: Interna-
tional Conference on Computational Sci-
ence ,pages 502-509, 2006

[4] Tong Chen, Tao Zhang, Zehra Sura, Marc
Gonzalez Tallada, Kathryn OBrien, Kevin
OBrien: Prefetching Irregular References
for Software Cache on Cell: CGO, pages
155-164, 2008

5


