
Arnab Sinha is a student of NIT, Durgapur and is presently working for M.Tech dissertation work at ISI, Kolkata
under the supervision of Prof. Nabanita Das.

A Comparative Study of the MPI Communication Primitives on a Cluster

Arnab Sinha
 Computer Sc. & Engg. Dept.
NIT Durgapur, West Bengal

sinharnab@gmail.com

Nabanita Das
ACM Unit

Indian Statistical Institute Kolkata
ndas@isical.ac.in

Abstract: MPI (Message Passing Interface) has
become the de facto standard for implementing
parallel programs on distributed systems. In MPI,
the two basic communication primitives are point-
to-point communication and broadcast respectively.
In this paper, we evaluate and compare the
performance of broadcast with point-to-point
communication (both blocking and non-blocking)
of the MPI-1 standard library on a cluster computer
in communicating the same data block among all
processors. The performance in terms of delay is
compared by varying the number of processors, and
the data block size. The tool Jumpshot-4 is used for
detailed measurement of the performance of MPI
communications routines.

Keywords: Parallel Programming, MPI (Message
Passing Interface), Speed-up, Communication
Primitives, Cluster Computers

1 Introduction

Message passing systems simplify the
concurrent software development on parallel
computers by separating the hardware
architecture from the software configuration of
processes. In the last decade, several
communication systems for multicomputers
have been implemented. Some of them have
been developed for a particular architecture
whereas others are more general. Examples of
these systems are Express, P4, PARMACS and
ZipCode. The need of portable communication
facilities for a very large set of parallel
architectures finally leaded to the definition of
the MPI (Message Passing Interface) standard
library [1], which embodies the main features
of those earlier systems.

Message passing libraries in MPI allow
efficient parallel programs to be written for
distributed systems. These libraries provide
routines to initiate and configure the

messaging environment as well as sending and
receiving packets of data. Since the
communication delay plays an important role
to determine the completion time of a program,
it is very important to investigate the delay
associated with the different communication
primitives of MPI, in details, for using them
efficiently and appropriately within the
programs.

The two popular communication methods of
MPI are point-to-point (SEND/RECV which is
blocking type and ISEND/RECV which is
non-blocking type) and MPI BCAST (for
broadcasting). Now it is interesting to study
that in transferring the same data block to a
number of processes, keeping all other
conditions same, which of the above
communication methods will perform better in
terms of delay. Moreover, how this difference
in delay varies with the number of processes
and the size of data blocks.

This paper presents, evaluates and compares
the performance of the basic point-to-point
communication (blocking and non-blocking)
and broadcast communication primitives of the
MPI-1 standard library on a HCL Cluster
computer using the tool Jumpshot-4 [2]. The
comparison is done on the basis of size of data
block exchanged and the number of processors
involved. The study reveals the interesting
fact that for small data size (80 Kbytes), with 1
< P < 6, the communication delay for BCAST
is more than it is for the non-blocking point-to-
point primitive ISEND, where P is the number
of processors involved. The study on its
application to a standard matrix multiplication
program also supports this finding. It also
reveals the fact that with small number of
processors P < 6, ISEND is always marginally
better than BCAST, and the improvement in

completion time increases with the increase in
the data block size. However, with P > 6,
BCAST outperforms ISEND in respect of
completion time. Therefore, it is suggested that
for number of processors P < 6, broadcast
communication should be implemented with
ISEND using linearly.

The rest of the paper is organized in the
following way. Section 2 describes the test
platform and tools used. Section 3 presents the
experimental results on communication
primitives alone. Section 4 shows the results
on matrix multiplication algorithm. Section 5
concludes the paper.

2 Test Platform & Tools Used

The cluster computer used for this study
consists of 18 nodes having Intel Pentium IV
processors. The master node configuration is
Intel motherboard with Intel E7210 chipset
with single CPU of 3.0 GHz with 1MB L2
cache. It has 1 GB of ECC DDR RAM. The
operating system is Red Hat Enterprise Linux
ES3.0 Standard.

The slave nodes have Intel motherboard with
Intel 865G chipset. Their processors operate at
clock speed of 3.0 GHz with hyper threading
support and 1MB L2 cache. The memory is
512 MB DDR RAM and the operating system
is Red Hat Enterprise Linux 3.0. All the nodes
form a star connected topology using HCL
Gigabit switches as shown in Fig.1.

Figure 1: Star Network configuration

The MPICH implementation is from ANL
mvapich-1.2.6 compiled with gcc-3.2.3-
3.x86_64. Log files in .clog format are
generated using MPE and viewed using

Jumpshot-4 [2] for doing postmortem
performance analysis, especially the time
delay, of the executed parallel programs.

3 Experiments and Results

Knowing the communication overhead of the
MPI communication primitives before hand,
has dual benefits. It enables the programmers
to write efficient parallel software and
secondly, to obtain a model to assess the
overhead introduced from those
communication types for different message
sizes and processor numbers. The
measurements obtained from each experiment
concern the minimum, maximum and average
values of communication latency.

We are interested to compare the basic
communication operations of MPI BCAST,
SEND and ISEND respectively. The objective
is, when in a program the master needs to
transfer the same data block to all slave nodes,
that is often required during initialization,
which communication primitive will be
efficient in terms of latency, and how the
difference in latency depends on the data block
size and the number of processors.

Two simple MPI programs are executed where
blocks of data are communicated using the
MPI primitives namely BCAST and
SEND/ISEND in a simple linear loop. While
executing these codes for different sizes of
data blocks and number of processors, we
generate the logfiles. Each logfile is then
viewed using Jumpshot-4, analyzed and the
time elapsed for communicating the data block
from master to slave processors is measured.

Figures 2 and 3 show the snapshots of the
logfiles generated using BCAST and SEND
respectively for transferring 80 Kbytes of data
to 12 processors. Figures 4 & 5 show the
variation of communication time with number
of processors for transferring data blocks of
80 Kbytes and 180 Kbytes respectively for
BCAST, SEND and ISEND operations. Each

point on the graph represents the average time
for 10 executions.

Figure 2: Logfile viewed with jumpshot tool using
BCAST

Figure 3: Logfile viewed with jumpshot tool using
SEND

From the graphs it is evident that
communication times required by SEND and
ISEND are comparable. It is expected since the
processors have no computation load, and has
to wait equally for the completion of
communication in both cases. It is also clear
that with number of slave processors P > 8, the
communication time required for same data
block size is less for broadcasting than for
SEND/ ISEND. The difference is more with
larger data block and with more number of
processors. More interestingly, for data size of
80 Kbytes, the non-blocking point-to-point

communication has latency even lesser than
BCAST with 4 > P > 8. The study reveals the
fact that BCAST saves communication time
significantly compared to SEND/ISEND for P
> 8. However for less number of processors,
and less data block size, it is evident from the
results that ISEND (non-blocking point-to-
point communication) performs better.

Comparison for data block of 80 Kbytes

0
2

4

6
8

10
12

14

16
18
20

0 2 4 6 8 10 12 14 16 18

No. of Processors

Ti
m

e
(i

n
m

se
c)

BCAST SEND ISEND

Figure 4: Communication latency vs number of

processors for 80 Kbytes data

Comparison for data block of 180 Kbytes

0
5

10
15

20
25

30
35

40

45

50

0 2 4 6 8 10 12 14 16 18

No. of Processors

Ti
m

e
(i

n
m

se
c)

BCAST SEND ISEND

Figure 5: Communication latency vs number of

processors for 180 Kbytes data

4 Study on Matrix Multiplication
Algorithm

Next, to verify the above observation,
experiment is done on a simple parallel
algorithm of matrix multiplication where to
multiply two N × N matrices A and B, A is

distributed row-wise over the processors
uniformly i.e. at most N/P consecutive rows
to each processor (alocal), and the B matrix is
broadcast to all processors [3]. Each processor
then computes definite rows of the product
matrix C, (clocal) as shown in Figure 6.
Broadcasting of B matrix is implemented by
point-to-point SEND / ISEND in linear loop or
BCAST respectively for comparing the time of
completion in the master.

Figure 6: A slave processor –i with submatrix
alocal of A, and matrix B, calculates submatrix

clocal of C

The outline of the algorithm is given below:

float a(dim,dim), b(dim,dim), c(dim,dim)
nrows = dim/(numprocs-1)
if(myid .eq. master) then
! Intialize matrices A & B
call Broadcast/Send(B to all) … (I)
do i=1,numprocs-1
call Send(nrows rows of A to i)
end do
do i=1,numprocs-1
call Receive(nrows rows of c from i) end do
else ! Processors other than master
allocate (alocal(nrows,dim),
clocal(nrows,dim))
call Broadcast/Recv(B to all) … (II)
call Receive(alocal from master)
call jikloop ! clocal=alocal*B
call Send(clocal to master)
endif

This program is executed varying the
dimension of the matrices, the number of
processors used and using point-to-point
SEND / ISEND in loop and BCAST
respectively for the distribution of matrix B (in
the statements marked as I and II in algorithm).

Again repeating the experiment the
communication time and the total completion
time in the master are measured and the
averages for 10 executions are plotted as
shown in Figures 7-10 respectively.

Using square matrices of 80kbytes

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18

No. of Processors
To

ta
l C

om
pl

et
io

n
ti

m
e

(i
n

m
se

c)

BCAST SEND ISEND

Figure 7: Completion time vs number of
processors for matrix size of 80 Kbytes

Using square matrices of 180kbytes

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

No. of Processors

To
ta

l C
om

pl
et

io
n

ti
m

e
(i

n
m

se
c)

BCAST SEND ISEND

Figure 8: Completion time vs number of
processors for matrix size of 180 Kbytes

From Figures 7 and 8, it is evident that with
P > 8, broadcast results the least time of
completion for both matrix sizes, though the
time deteriorates for P > 9, as then the
communication overhead overrules the benefit
of parallel processing. It is also clear that for P
< 6, ISEND results the least completion time,
revealing the fact that for less number of
processors it is advantageous to use non
blocking point-to-point communication for
broadcasting same data to all.

Total Completion Time (using 5 slave processors)

5

10

15

20

25

60 80 100 120 140 160 180 200
Message Size (in Kbytes)

To
ta

l C
om

pl
et

io
n

Ti
m

e
(i

n
m

se
c)

BCAST SEND ISEND

Figure 9: Completion time vs data block size with

P = 5

Total Completion Time (using 10 slave processors)

5

10

15

20

25

30

35

40

60 80 100 120 140 160 180 200
Message Size (in Kbytes)

To
ta

l C
om

pl
et

io
n

Ti
m

e
(i

n
m

se
c)

BCAST SEND ISEND

Figure 10: Completion time vs data block size

with P = 10

Table 1:Comparison between ISEND & BCAST
Best primitive with % improvement in time

Matrix Size (in Kbytes)

80 115.2 156.8 180
3 ISEND

16.49%
ISEND
9.30%

ISEND
17.49%

ISEND
27.22%

5 ISEND
26.01%

ISEND
5.90%

ISEND
4.86%

ISEND
9.01%

7 BCAST
5.26%

BCAST
2.41%

BCAST
12.50%

BCAST
10.26%

10 BCAST
25.82%

BCAST
27.40%

BCAST
22.41%

BCAST
36.46%

N
o

 o
f P

ro
ce

ss
o

rs

16 BCAST
28.08%

BCAST
31.71%

BCAST
39.16%

BCAST
48.21%

It is to be noticed that in both cases when
compared with Figures 4 and 5 respectively, it

is observed that the difference between ISEND
and SEND are prominent in the later cases. It
is obvious, since for matrix multiplication
algorithms, processors can better utilize the
waiting time in sending data by using non-
blocking send, showing better performance
compared to the blocking send. Figures 9 and
10 show the variation of completion time with
message size using P as a parameter. It clearly
shows that ISEND marginally outperforms
BCAST with P=5, whereas with P=10,
BCAST results the least time of computation.
Moreover, the savings in completion time
increases with the increase in data block size.
Finally, Table 1 summarizes the percentage
improvement in completion time for matrix
multiplication using ISEND and BCAST
respectively.

5 Conclusion

From the above experimental study on the
given cluster configuration described in section
2, it is interesting to note that with number of
processors P < 6, broadcasting can be
implemented using point-to-point ISEND
linearly to save time appreciably. Table 1
shows that for matrices of size 80 Kbytes,
ISEND results a savings of 26% over BCAST
with P = 5, and 16% with P = 3. So, the
experimental results reveal the fact that for
small volume of data and for less number of
processors, it is better to implement
broadcasting in terms of non-blocking point-
to-point communication in parallel programs
using MPI whereas for other cases
broadcasting saves time significantly.

REFERENCES

1. Snir, M., Otto, S. W., Huss-Lederman, S.,
Walker, D. W., Dongarra, J.J., MPI: The
Complete Reference, The MIT Press, 1996.
2.http://www.mcs.anl.gov/perfvis/software/vie
wers/index.htm#Jumpshot-4
3. Michael J. Quinn, Parallel Programming in
C with MPI and OpenMP, McGraw-Hill, 2003.
4. http://en.wikipedia.org

