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Abstract—This paper proposes and evaluates rigorous
statistical regression techniques for Java performance
analysis on a high-end embedded processor (MPC7447A).
Our models relate overall Java system performance to
various microarchitecture metrics and their interactions.
We show that the models we develop in this paper
are easy to construct, are interpretable and have high
prediction accuracies.

I. INTRODUCTION

JavaTMapplications are prevalent on a wide variety

of processors, many of which provide on chip perfor-

mance monitoring units (PMU) to measure and track

system performance. Due to additional complexities

associated with running Java applications on a virtual

machine (JVM), it is necessary to clearly understand

the influence of the various factors that affect per-

formance. As with any complex system, a thorough

performance analysis of Java applications is critical

to optimize current systems and to aid design and

development of future platforms for Java.

However, complex microarchitecture features in con-

temporary processors obfuscate interpretation of data

measured using performance counters. Moreover, the

one factor at a time approach, adopted by reported

Java performance analyses[1], inherently ignore higher

order interactions that may exist between factors that

contribute to performance. Consequently, the method-

ology skews results and may result in incorrect con-

clusions drawn from performance analyses.

We propose and illustrate the use of rigorous statis-

tical techniques for Java performance analysis. Specif-

ically, we build regression models that relate overall

Java system performance to various microarchitecture

metrics and their interactions. An interaction is said

to exist when two events occur at the same time and

the performance impact attributed to one event depends

on the occurrence of the other event. For example, the

performance impact of cache misses would depend on

the magnitude of TLB misses since software page-

table walk routines tend to pollute the cache. Our

approach teases out several such nuances of production

environments and quantifies their effect on overall

performance. Moreover, these models are entirely con-

structed using measurements on a production system

running a commercial Java runtime.

Georges, et.al.[1] identify flaws in existing method-

ologies used in Java performance evaluation and ad-

vocate the use of statistical rigor in performance

evaluations. An earlier paper [2] identifies signifi-

cant processor parameters for simulation using the

Plackett-Burman (PB) experimental design. However,

the disadvantage with this approach is that PB de-

signs inherently ignore all factor interactions. Recent

studies on modeling software performance [3], [4],

try to relate observed workload performance to key

microarchitecture events using model trees, but, none

of these studies consider Java workloads. Other studies

on processor performance modeling [5], [6] are based

on software simulation of general purpose workloads

using a processor model. Due to the complexity of the

workload, these studies use partial traces and reduced

input data sets respectively.

We perceive several drawbacks while applying the

methodology adopted by these papers to model Java

performance: Contemporary processors are far too

complex to be modeled accurately in a simulator and

thus, the generated models may not be representative

of actual performance. Moreover, the use of reduced

input data sets with Java workloads has been shown [7]

to poorly represent Java execution on a real machine.

In contrast, our work (a) uses measurements from real

machine execution using a recent production JVM,

(b) uses large data inputs and all Java applications

are run to completion. Further, to the best of our

knowledge, this is the first study that extends rigorous

statistical modeling to advance accurate Java workload

performance analysis and characterization.

II. PRELIMINARIES

Regression analysis is a statistical tool that expresses

the relationship between a response variable and its

predictors over a sample space. In its simplest gener-

alized form, the response variable y may be related lin-
early to p independent predictors or regressor variables
(Z1, Z2, .., Zp) as expressed by the model in Eq.1.

y = β0 +

p
∑

i=1

βiZi + ǫ (1)

The parameters {βi|0 ≤ i ≤ p} are called the re-
gression coefficients and represent the expected change

in response y per unit change in {Zi|1 ≤ i ≤ p}
when all the remaining variables {Zj |j 6= i} are held
constant. The residual or the error due to lack of fit is

denoted by ǫ. The model describes a hyperplane in the
k-dimensional space of the regressor variables Zi and

β0 can be interpreted as the intercept of the response

surface with the y-axis. Linear regression models are

commonly used to estimate parameter significance and

also to predict the response variable at arbitrary points

in the design space.



A. Interactions

Often, the predictors interact, i.e., the response of

y to a change in Zi depends on the value of Zj . In

such cases the model in Eq.1 can be easily extended

to model such two-factor interactions as follows:

y = β0 +

p
∑

i=1

βiZi +

p
∑

i=1

p
∑

j=i

βijZiZj + ǫ (2)

It is easy to see that Eq.1 can be extended to model

third and higher order interactions in a similar fash-

ion. Using substitution, the complete linear regression

model can be represented as a sum of p terms in the
generic form:

y = β0 + β1Xn1 + β2Xn2 + ...βpXnp + ǫn (3)

The subscript n identifies the trial and the subscript
p denotes the predictor inX. In matrix terms, the above

equation and its solution can be written as:

y = Xβ + ǫ ⇒ β̂ = (X′X)−1X′y (4)

Hence, given the linear model with p terms, the data
set from the design matrix X and the response vector

y, the least squares estimates of the partial regression

coefficients β̂ = (β0, β1, ..., βp−1) can be computed
using Eq.4.

B. Model Building and Simplification

We fit a model consisting of all appropriate main ef-

fects and their second order interactions. This model is

used as the base model for goodness of fit comparisons

for pruned and simplified models developed next.

Overfitting refers to a model with too many param-

eters which fits the data well, but is unable to gener-

alize beyond that. To avoid overfitting, we prune this

base model further (by dropping unnecessary terms)

using stepwise search based on Bayesian Information

Criterion (BIC) which penalizes overfit models. The

criterion is defined by the following relation:

BIC =
n + p(ln(n) − 1)

n(n − p)
SSE (5)

where, SSE =
∑n

i=1
(yi − ŷi)

2 is the error sum of

squares, p is the number of parameters in the model,
and n is the number of samples. The model with
the minimal BIC tries to find an optimal compromise

between model fit and model complexity.

C. Model Diagnostics

We use the following measures to evaluate our models:

(1) The residuals {r|r = y − Xβ̂}, are the differ-
ences between the data and the fitted values. As a

consequence of least squares estimation of β, the
residuals will be uncorrelated with all predictors (and

intercept, if any) and can be used to diagnose problems

with the model.

TABLE I
7447A PROCESSOR PARAMETERS

Parameter Description

Pipeline 7 stage, 4way superscalar
Frontend 12entry fetch queue; 128entry, 4way BTIC;

2048entry BHT, 2bit prediction, 8entry RAS
ITLB/DTLB 128entry, 2way, LRU replacement
L1 Caches Separate 32KB, 8way, 32B blocks, PIPT,

1cycle read/write, PLRU replacement
L2 Cache Unified 512KB, 8way, 64B line, LRU
Latencies 1/9/172 cycles (L1/L2/Mem)
Functional Units 4 IALU, 32 GPR; 1 FP-ALU, 32 FPR(64bit)

(2) The fit of the model can be summarized by the

residual standard deviation, σ̂ =
√

∑n

i=1
r2

i /(n − p)
and R2, the fraction of variation ’expressed’ by the

model:

R2 = 1 −
σ̂2

s2
y

(6)

where, sy is the standard deviation of data and (n−p)
is referred to as the degrees of freedom.

(3) The goodness of fit of a reduced model (with

R2) with respect to an original model (with R2

o) can

be estimated with the F-test [8] using the statistic F ,
computed as:

Fk,n−p−1 =
(R2 − R2

o)/k

(1 − R2)/(n − p − 1)
(7)

where, k is the difference between the degrees of
freedom of the original model and that of the re-

duced model. Given that the statistic F follows the
F-distribution with (k, n− p− 1) degrees of freedom,
the p-value is defined as the probability P (F > |c|),
where c is a constant. Thus, a small p-value for an
F-test leads us to reject the null-hypothesis, suggesting

that additional predictors in the larger model are sta-

tistically significant in predicting the response. We use

this test to show the statistical significance of higher

order interactions between predictors.

(4) Finally, a good measure of model quality is

its prediction accuracy. We determine the prediction

accuracy for a given model using cross validation

as in other modeling studies [3]. Cross validation

involves randomly partitioning the observations into n
sets (n = 10 here). The models are then built using
n − 1 sets and the last set is used for testing the
prediction accuracy. This process is repeated n times,
using a different set each time. Overall accuracy is

determined by averaging the prediction metrics across

all sets/folds. The prediction metric we use is the

prediction error and its 95% confidence interval.

III. EXPERIMENTAL FRAMEWORK

A. Measurement Methodology

The models we build are based on measurements

on the Freescale 7447A processor – a popular high-

end embedded processor for the PowerPC instruction

set architecture (ISA). Our experimental platform fea-

tures a 1.5GHz 7447A processor, 768MB memory and



TABLE II
PROCESSOR EVENTS MEASURED

Processor Cycles cycles

Instructions Dispatched instd

Instructions Completed inst

Branch Mispredictions br.mpred

Load Instructions ld

Store Instructions st

FPU Instructions fpu

Branch Instructions br

Other Instructions ( = inst - ld - st - br - fpu ) other

DTLB miss dtlb.miss

ITLB miss itlb.miss

L1 I-cache miss il1.miss

L1 D-cache miss dl1.miss

L2 cache hits l2.hits

L2 cache miss l2.miss

L2 cache miss (data) l2.dmiss

L2 cache miss (instruction) l2.imiss

Prefetch Engine Request prefetch.req

Prefetch Engine Full prefetch.full

runs the Linux operating system kernel v2.6.17. The

processor microarchitecture parameters are outlined in

Tab.I and further details may be found in [9].

The 7447A processor features a performance mon-

itoring unit (PMU) that can be configured to mea-

sure various microarchitecture events such as cycles

elapsed, cache misses, branch mispredictions, etc. The

processor features six 32bit counters and can be con-

figured to count from among 200+ events specified in

[10]. The Linux kernel is patched to support access

to the processor PMU using the perfctr[11] package

v2.6.28. The perfctr patch also extends the limited

32bit physical counters into 64bit virtual counters.

Since the Java virtual machine executes Java threads

as native threads, we extend the perfctr package to

aggregate counts over all threads as the original per-

fctr package only supports measuring single-threaded

processes.

We choose 18 processor microarchitecture events

to measure and model embedded Java applications.

These metrics are similar to those used in earlier Java

performance analysis studies [3], [6]. The events and

their acronyms used in this paper are shown in Tab.II

and can roughly be categorized based on instruction

mix, TLB, cache and branch predictor parameters.

Measurement noise due to extraneous factors are

reduced by (1) performing all experiments in single

user mode with all unnecessary processes and ser-

vices turned off, and (2) disabling processor volt-

age/frequency scaling in the Linux kernel. Since mul-

tiple runs of each benchmark are required to capture

all events due to limited physical counters, we test

for the statistical significance of errors across multiple

measurements. This is especially important in the case

of Java applications since the JVMs employ dynamic

optimization techniques to enhance performance. Our

results indicate that the measurement error interval

averages ±1.53% with 95% confidence, when each
experimental configuration (benchmark-heap combina-

tion) is replicated five times.

TABLE III
BENCHMARK APPLICATIONS

Benchmark Description Hmin(kB)

compress file compression 8193
jess expert shell system 2177
raytrace raytracing 4097
db database 8193
javac Java compiler 8193
mpegaudio MPEG-3 audio decompression 2177
mtrt multithreaded raytracer 6145
jack Java parser generator 2177

ecm Embedded CaffeineMark v3.0 2177

B. Virtual Machine

For our model construction experiments we use

the recently released Sun JavaSE runtime environment

v5.0 for embedded[12] PowerPC. We use the default

mixed mode execution and all our experiments consider

a per-benchmark heap size as in [13]. We vary heap

size starting from the minimum heap size (Hmin) and

increase the heap size in steps of 0.5Hmin upto a

maximum heap size of 6Hmin. The minimum heap

size is determined empirically to be the least heapsize

at which the Java application can execute without any

OutOfMemory errors, subject to the caveat that the

least heap allowed by the SunTMJVM is 2,177kB.

C. Benchmarks

Our workload is meant to be representative of

the embedded domain and hence the applications are

drawn from the SPEC JVM98[14] and Embedded

CaffeineMark[15] (ECM 3.0) suites. ECM consists of

five tests: sieve, loop, logic, method and float. Since

each of these tests are basic, the composite result of

all five tests are used for ECM. All SPEC JVM applica-

tions use the largest data set (-s100), unless mentioned

otherwise. Tab.III lists the benchmark applications, a

brief description and the minimum heap size required

to run the benchmark on our platform.

IV. EVALUATION RESULTS

We use the statistical computing package R, to build

and analyze our models. We begin with a qualitative

examination of processor performance data to deter-

mine the relevant predictors to use for modeling.

A. Statistical Analyses

The interrelation between the key events is illus-

trated in the dendrogram in Fig.1. These are arrived at

using hierarchical variable clustering based on squared

Spearman’s rank correlation coefficients as similarity

measures[8]. A larger ρ2 indicates higher correlation

between the predictors connected on the figure and

the horizontal line connecting the predictors marks the

value of ρ2 when extended to the vertical axis.

In cases where overfitting is a concern, redundant

predictors can be eliminated by choosing only one

predictor from a pair of highly correlated predictors.

This is also effective when the predictors are collinear,

since multicollinearity[8] influences effect estimation



b
r

o
th

e
r

s
t

ld

b
r.

m
p

re
d

c
y
c
le

s

in
s
t

in
s
t.

d
is

p

fp
u

d
l1

.m
is

s

l2
.h

it
s

d
tl
b

.m
is

s

p
re

fe
tc

h
.r

e
q

l2
.d

m
is

s

l2
.m

is
s

p
re

fe
tc

h
.f

u
ll

il1
.m

is
s

l2
.i
m

is
s

it
lb

.m
is

s

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

S
p
e

a
rm

a
n

 ρ
2

Fig. 1. Predictor clustering

by artificially inflating p-values even though the vari-

able is significant. However, multicollinearity doesn’t

pose a problem when predicting and the predictions

will still be accurate with R2 (Sec.II-C2) capturing

how well the model predicts the response y (processor
cycles).

Fig.1 also shows a few obvious correlations, e.g.,

between dispatched and completed instructions and be-

tween load and store instructions. The events l1.dmiss

and l2.hits are also highly correlated suggesting that

most L1 data cache misses are serviced by the L2

cache. The dendrogram also indicates a high correla-

tion between l2.dmiss and l2.miss, suggesting that L2

cache misses are predominantly due to data accesses.

This is indeed so, with over 90% of L2 cache misses

due to data misses. Furthermore, we observe that these

misses are also highly correlated to prefetch requests.

This is because the the prefetch engines on 7447A

prefetch the second block of an L2 cache line even

if data in the second block is not required. Finally, the

L2 cache misses due to instructions are predominantly

correlated to itlb.miss and to a lesser degree to L1

instruction cache misses.

Since our research focusses on performance anal-

ysis, we use the total execution time, measured in

processor cycles, as the response. In order to estimate

the strength of relationship between the predictors and

the response, we compute and plot the non-monotonic

(quadratic in ranks) Spearman’s rank correlation coef-

ficient separately for each of the predictor variables in

Fig.2. A lack of fit would be more consequential for

predictors that exhibit higher ρ2. In cases where it is

difficult to assess how the predictors bear on overall

performance based on microarchitectural insights, it is

helpful to prioritize inclusion of predictors with higher

ρ2 in the model. Fig.2 indicates that the impact of a

lack of fit would be higher (in descending order of

importance) for dl1.miss, dtlb.miss, l2.dmiss, etc.

Spearman ρ
2
    Response : cycles

Adjusted ρ
2

0.2 0.4 0.6 0.8
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ld  

dtlb.miss  

dl1.miss  

Fig. 2. Strengths of marginal relationships

TABLE IV
MODEL DIAGNOSTICS

Diagnostic
Model

I-order II-order II-order pruned

R
2 0.907 0.992 0.992

F-test reject - accept

Prediction
error (%)

12.02±32.34 2.89±11.27 2.91±11.25

B. Model Evaluation

We evaluate the effect of of higher order interac-

tions and the efficacy of the model pruning process

(Sec.II-B) using metrics described in Sec.II-C. We

designate a model with main effects only as a I-order

model, a model with main effects and interactions

between any two predictors as a II-order model, and

so on. Since not all interactions are meaningful, based

on microarchitectural insights (e.g., l2.imiss*l2.dmiss,

dl1.miss*l2.imiss etc.), we remove these terms from

our II-order models.

The model diagnostic results are summarized in

Fig.4 and Tab.IV. We observe that, though the I-order

model has a reasonably high R2 value, it exhibits high

prediction errors and high prediction error intervals

at 95% confidence. Also, the F-test (Eq.7), to check

for the goodness of fit with the II-order model rejects

the null hypothesis with 99% confidence indicating

strong statistical evidence of a lack of fit from 2-way

interaction terms. Tab.IV also indicates that the pruned

II-order model performs comparably with the complete

II-order model, while using fewer terms. This can have

a significant impact in cases where the number of

predictors are large. A similar experiment comparing II

and III-order models indicate a lack of fit due to some

third order interaction(s), but we do not investigate

them further, since the second order models already

achieve accuracies close to measurement error.

To ease interpretation and facilitate effects esti-

mation, we standardize the predictors by subtracting

the mean and dividing by the standard deviation to

yield a z-score. This changes our interpretation of the



Coefficients Estimate Std. Error

---------------------------------------------

(Intercept) 1.919e+10 3.457e+08

l2.dmiss 1.286e+10 1.530e+09

l2.imiss -8.088e+09 6.100e+08

il1.miss 1.261e+10 7.246e+08

dl1.miss -4.111e+09 1.094e+09

dtlb.miss 1.962e+09 7.472e+08

br.mpred -3.462e+09 1.198e+09

l2.dmiss*dl1.miss 3.823e+09 4.794e+08

l2.dmiss*dtlb.miss -4.616e+09 6.143e+08

l2.dmiss*itlb.miss 1.582e+10 1.544e+09

l2.dmiss*br.mpred -1.147e+10 9.400e+08

l2.imiss*il1.miss 2.003e+10 2.018e+09

l2.imiss*itlb.miss -7.566e+09 1.590e+09

l2.imiss*br.mpred 2.649e+09 8.828e+08

il1.miss*dl1.miss 1.359e+10 3.166e+09

il1.miss*dtlb.miss -9.680e+09 2.220e+09

il1.miss*itlb.miss -1.529e+10 7.344e+08

il1.miss*br.mpred -8.416e+09 1.918e+09

dl1.miss*dtlb.miss 2.412e+09 6.100e+08

dl1.miss*itlb.miss -1.786e+10 2.182e+09

dl1.miss*br.mpred 1.033e+10 1.070e+09

dtlb.miss*itlb.miss 1.375e+10 2.017e+09

dtlb.miss*br.mpred -4.079e+09 5.125e+08

Fig. 3. Pruned II-order model with significant interactions

intercept to the mean of y when all predictor values
are at their mean values. We note that the residual

standard deviation and R2 do not change since linear

transformations of the predictors do not affect the fit of

a regression model [16]. The resulting model is shown

in Fig.3. Two interacting terms are indicated using an

asterisk ’*’ between them.

Based on the model in Tab.3, we observe that cache

events, specifically L2 cache events and their inter-

actions, significantly contribute to execution cycles.

Hence, Java applications may benefit from proactive

prefetch mechanisms that improve L2 cache misses.

Due to the additional support required to study Java

applications in a simulated environment [17], several

studies resort to trace based simulation to understand

Java characteristics. This is especially true with studies

that seek to characterize and optimize cache/memory

hierarchy performance for Java workloads and report

improvements in terms of miss-rates. The results from

our experiments can be used to extend such studies

to estimate the impact of their proposals on overall

performance by simply plugging in their measured

metrics into our models.

V. CONCLUSION

This paper highlights the importance of accounting

for higher order interactions in performance analyses

and illustrates how that can be achieved using a frame-

work based on statistical modeling. As a case study,

we propose, illustrate and evaluate the use of linear

regression models for Java performance analysis, using

processor performance counter data. The models we

develop are easy to interpret and achieve accuracies

that are close to measurement errors. They do so

by accounting for second order interactions between

predictors that contribute to performance.

One can conceive a wide range of applications for

these models and the system architect is advised to

simultaneously tune the parameters for optimal per-

formance. Though the modeling methodology was ex-
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Fig. 4. Diagnostic residual plot (Sec.II-C1) for the II-order pruned
model (Fig.3). The plot does not indicate any anomalies.

plored on a single platform, we feel that the methodol-

ogy is generic enough to extend to other platforms. Our

current research includes enhancing these models to

be program phase aware and exploring other modeling

techniques for performance analysis and prediction.
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