
Design and Implementation of a Scalable, Fault tolerant, Heterogeneous
and Secured Distributed Storage Framework

Jerre Louis C.L.J. (Postgraduate Student)
Department of Computer Science

SSN College of Engineering
jerrelouis@gmail.com

Aravindan C.
Department of Computer Science

SSN College of Engineering
aravindanc@ssn.edu.in

Abstract

The design and implementation of a scalable,
fault tolerant, heterogeneous and secured dis-
tributed storage framework named SCAVENGER,
which aggregates the free storage spaces of the
personal computers, is presented in this paper.
The datasets are fragmented and stored with
enough replication in different systems. The de-
sign includes a SCAVENGER protocol suite to
monitor the activities like joining of new sys-
tem, data storage, data retrieval and system fail-
ures. Multiple managers are used to make the de-
sign scalable. A synchronization protocol is de-
signed to synchronize the data among the mul-
tiple managers. A model for fault tolerance is
also designed based on the parameters like black-
out time, overlap time, latency, trust, load, repli-
cation and redundancy. This is a minimization
model which will be the fitness function for ge-
netic algorithm to make decision upon the frag-
ment size, the location of storage and the number
of replications.

1. Introduction

The personal desktops are usually equipped
with limited disk space. There are many per-
sonal desktops within the campuses whose stor-
age spaces are unused. An advantageous and eco-
nomical alternative to store large dataset which
cannot be accommodated in a personal desktop
is to bind the collective storage potential of indi-
vidual personal desktops. These unused spaces

can be aggregated and can be treated as a storage
framework.

SCAVENGER is a distributed storage frame-
work, which aggregates the free storage spaces
available in the personal desktops. The personal
desktops that donate some amount of its unused
storage space are called benefactors; the con-
troller of this framework is called manager and
the users who either store or retrieve or delete the
dataset are called client. The manager keeps track
of all the meta-data information like the benefac-
tor registration details, and location of the stored
dataset. Although there exists work on desktop
storage aggregation, SCAVENGER addresses the
issues like scalability, fault tolerance, heterogene-
ity and security.

Multiple managers are used in the SCAV-
ENGER framework to support thousands of desk-
top computers without any bottleneck in the
framework. Fault Tolerance is achieved by repli-
cation. Choosing an arbitrary number of replica-
tions could waste the time for storing the dataset,
network bandwidth, and the storage space of the
benefactor systems. The need for having a fault
tolerant system with minimal number of replica-
tions is required. In addition to the requirement
of having a minimal number of replication, the
datasets are stored onto the benefactors; the fail-
ure of these benefactors should not hinder the re-
trieval of the stored fragment. To fulfill the above
two requirements an effective and efficient fault
tolerant model is designed.

The rest of the paper presents the architec-
ture and the design of the SCAVENGER frame-



work. Section 2 discusses related work, Section
3 presents the architecture, Section 4 presents the
issues tackled by the SCAVENGER framework,
Section 5 presents the implementation details and
Section 6 presents the results.

2. Related Works

The FreeLoader[12] closely resembles this
work. However, SCAVENGER differs from
FreeLoader in the architecture and storage of data
onto the benefactors. What separates SCAV-
ENGER from the other projects is its unique com-
bination of features like security, design of ge-
netic algorithm, design of protocol suite and us-
age of multiple managers.

There are many networked and distributed
file systems exists some of them are NFS[9],
LOCUS[11], CODA[4], AFS[7] and GFarm[10].
SCAVENGER is a lightweight distributed stor-
age framework and not a file system. There
are many P2P systems exists some of them are
Kosha[1], Kazaa[13], PAST[6], Freenet[2] and
BitTorrent[5]. SCAVENGER is not a P2P as well.
The detailed related works can be referred from
our previous paper [3].

3. Architecture and Design

The actors in the SCAVENGER architecture
are the Client, the Manager and the Benefactors.
The dataset is stored in the following manner. The
client streams the dataset to the manager, upon re-
ceiving the size of the dataset the manager starts
the genetic algorithm (GA) which decides about
the number of replication, the number of frag-
ments and the location of storage. The manager
fragments the dataset, digitally signs, compresses
and distributes the fragment to the corresponding
benefactor. The receiving benefactor sends the
received fragment to two other benefactors and
so on. The retrieval of the dataset is done in the
following manner. The client requests the stored
dataset, the manager retrieves it from the bene-
factors and streams it to the requested client. The
client may delete the stored dataset by providing
the dataset name. All these operations are per-
formed securely. The security is taken care by the

protocol suite.

Figure 1. SCAVENGER Architecture

The rationale in designing this architecture is
to have a framework that has no bottleneck and
to reduce the burden on the client. A protocol
suite is designed to monitor the joining of the new
benefactor, to get the pulse of the benefactor, data
storage, data retrieval, benefactor failures, bene-
factor leaving the framework and a synchroniza-
tion protocol to synchronize the data among the
managers. The designs of the protocols are dis-
cussed below and each of the protocol has been
verified using the LTSA [8] tool.

3.1 SCAVENGER PROTOCOL SUITE

3.1.1 Joining of a new benefactor

The benefactor generates a public and private key
and then join the manager by providing its pub-
lic key (EUb), donated storage space, the location
where the fragment is to be stored and its IP ad-
dress. Then the manager validates if the donated
storage space is available in that benefactor. The
manager sends the acceptance by sending its pub-
lic key (EUm) if the information provided by the
benefactor is valid. The values given by the bene-
factor and its key are then stored in a database.

Figure 2. Benefactor joining



3.1.2 Pulse of the benefactor

The manager checks the pulse of the benefactor
at regular intervals. In order to show the authen-
ticity of the manager, it signs the probing request
(SIGm). The benefactor responds by signing its
response (SIGb).

Figure 3. Checking the pulse

3.1.3 Data Storage

The client generates a session key (Ks) and sends
it to the manager by encrypting it with the man-
ager’s public key (EUm). The manager acknowl-
edges the client. The client streams the dataset to
its manager by encrypting it with the session key.
The manager decrypts the dataset, fragment the
dataset, digitally signs that fragment, compress
that fragment and then stream it to the benefac-
tor by signing the data (SIGm). The benefactors
are chosen for storing the fragments according to
the decision given by the GA. The corresponding
book keeping is done.

Figure 4. Data storage

3.1.4 Data Retrieval

The client generates a session key (Ks) which is
given to the manager by encrypting it with the

manager’s public key (EUm). The manager ac-
knowledges the client. The manager requests the
corresponding benefactors by signing the request
and retrieve the fragment, decompresses it, verify
its signature and then stream it back to the client
by signing the file fragment.

Figure 5. Data retrieval

3.1.5 Benefactor taking a planned leave

The benefactor may take a planned or unplanned
leave from the framework. In the case of planned
leave, the benefactor sends the request of leaving
to the manager by digitally signing it. The man-
ager move the contents from that benefactor to a
new benefactor and the corresponding book keep-
ing is done.

Figure 6. Benefactor leaving

3.1.6 New Manager Joining

The administrator of the SCAVENGER frame-
work may deploy any number of managers ac-
cording to the requirement. If a system is to be



made as a manager, it needs to contact any of the
existing manager(s). The request is sent to the ex-
isting manager by the benefactor digitally signing
(SIGb)the request. Once the request is made, an
existing manager gives out the meta-data infor-
mation and the keys of the benefactor systems by
digitally signing it (SIGm). Once the meta-data
information and the keys are received, the new
manager acknowledges that manager. Upon the
acknowledgment the existing manager informs
all the benefactors about the joining of the new
manager.

Figure 7. New manager joining

3.1.7 Manager Synchronization

The benefactor may either register / store / re-
trieve / delete the file fragments with / in / from
the SCAVENGER framework. Once a manager
receives any of the requests, it informs all the
managers in the framework by digitally signing
(SIGm) about the transactions made between that
manager and the benefactor.

Figure 8. Manager Synchronization

4. Issues Addressed

SCAVENGER addresses the issues like fault
tolerance, scalability, heterogeneous and security.

4.1 Fault Tolerance

A balance between the number of replication
and fault tolerance is required, so an effective and
efficient fault tolerant model is designed based
upon the parameters like blackout time (BT ),
overlap time (OT ), latency (Lat), replication
(Rep), redundancy (RT ), trust and load. Black-
out time is the time during which the fragment is
not available in any of the system. Overlap time
is the time during which the same file fragment is
available in multiple benefactors. Latency is the
time taken by the benefactor to respond the man-
ager. Replication is the number of copies made
and stored in the benefactors. Redundancy is the
number of times the same fragment is stored in
a machine. Trust is the positive value given to
the benefactor, if the benefactor is available at all
time whenever the manager checks its pulse. The
load is the number of fragments, average size of
the fragment and space utilized in that system.
f∑

i=1

[BT Term + OT Term +

Replication Term] +
b∑

j=1

[Latency Term +

Trust Term + Load Term +
Redundant Term]

Where f is the number of fragments andb
is the number of benefactor systems where the
fragments are stored.

BT Term = BT Weight ∗ BT
OT Term = OT Weight ∗ OT
Replication Term = Rep
Latency Term = Lat
Trust Term = (Trust)−1

Redundant Term = RT Weight ∗ RT
Load Term = log(No.ofFrag) +

log(AvgFragSize) +
((SpaceUsed/TotalDonSpace) ∗ 100)−1

This minimization model will be the fitness func-
tion for GA.

5. Implementation

All the three programs (manager, benefactor
and client) in this framework is developed us-



ing Java with Derby as the database. The im-
plementation of GA is crucial in this framework
as very quick decisions are to be made upon
the numbers of replications, number of fragments
and a place for storing these fragments. A so-
lution in the GA is represented using a triplet
< m,n, {BenefactorList} m ∗ n >. Where
m is the number of replications and n is number
of fragments. The initial population is generated
based upon the available time, available space,
redundancy and response time of the benefactor.
The fault tolerance model discussed earlier will
the fitness function for GA. The selection of par-
ents are done by the Roulette wheel method. A
cross over point is chosen at random and the cross
over is preformed on the chosen parents to form
a new offspring. The newly generated offspring
with least fitness value will replace the existing
population to form a new generation. New gen-
erations are generated till the satisfying condition
is met.

6. Results

This section presents the results of our pro-
totype implementation. The results were taken
when streaming a sample dataset of the size be-
tween 50 MB and 400 MB. The time taken for
storing the dataset, retrieving the dataset, retrieval
time of the dataset with a failure of 1 node and re-
trieval time of the dataset with a failure of 2 nodes
is depicted in the form of graph (Figure 9). The
results were generated with 15 benefactors that
were well scattered within the Computer Science
and Engineering department. The testbed config-
uration is given in Table 1.

SCAVENGER 15 Systems (15 Benefactors,
2 managers and 1 client).

Operating Systems Windows XP, Mac 10.4 and
Red Hat Linux

Processor Speed 1.4 MHz - 2.4 GHz
Storage Space 40 GB - 80 GB
Primary Memory 256 MB - 1 GB
Dataset 50 MB - 300 MB

Table 1. Testbed Configuration

Figure 9. File size vs Time

References

[1] A. Butt, T. Johnson, Y. Zheng, and Y. Hu.
Kosha: A peer-to-peer enhancement for the net-
work file system.In Proceedings of Supercom-
puting, 2004.

[2] I. Clarke, O. Sandberg, B. Wiley, and T. W.
Hong. Freenet: A distributed anonymous in-
formation storage and retrieval system.LNCS,
2000.

[3] C.L.J. Jerre Louis and C. Aravindan. Design
of a scalable, fault tolerant, heterogeneous and
secured distributed storage framework.In Pro-
ceedings of ICETET’08, pages 1313–1316.

[4] CODA File System.
http://www.coda.cs.cmu.edu.

[5] B. Cohen. Incentives build robustness in bittor-
rent. 2003.

[6] P. Druschel and A. Rowstron. Storage manage-
ment and caching in past, a large-scale, persis-
tent peer-to-peer storage utility.In Proceedings
of the 18th ACM Symposium on Operating Sys-
tem Principles, 2001.

[7] J. H. Howard. An overview of the andrew file
system. 1998.

[8] Labelled Transition System Analyser.
http://www.doc.ic.ac.uk/ltsa/.

[9] B. Nowicki. NFS: Network file system pro-
tocol specification. Network Working Group
RFC1094, 1989.

[10] Osamu Tatebe et. al. Gfarm v2: A grid file sys-
tem that supports high-performance distributed
and parallel data computing.In Proceedings of
CHEP’04, September 2004.

[11] G. Popek and B. J. Walker. The locus distributed
system architecture.MIT Press, 1985.

[12] S. Vazhkudai et al. Freeloader:scavenging desk-
top storage resources for scientific data.In Pro-
ceedings of Supercomputing’05.

[13] The kazaa media desktop.
http://www.kazaa.com/.


