
Power/Energy Perspective on Hyperblock Formation

Giuseppe Ascia, Vincenzo Catania, Maurizio Palesi and Davide Patti
Dipartimento di Ingegneria Informatica e delle Telecomunicazioni

University of Catania, Italy

Abstract— Architectures based on Very Long Instruction Word
(VLIW) processors are an optimal choice in the attempt to obtain high
performance levels in mobile devices. The effectiveness of these processors
depends on the ability of compilers to provide sufficient instruction-
level parallelism (ILP) in program codes. The main factor limiting the
possibility of obtaining high ILP levels is the presence of conditional
branches, which prevent a VLIW compiler from scheduling instructions
belonging to different paths in parallel. Hyperblock formation is the
main compiling technique to solve this limit affecting ILP, transforming
the code in such a way as to eliminate conditional branches. The paper
presents an analysis of the effect of this technique, not only from the
well-known perspective of performance gain but from that of power
dissipation and energy consumption. The effect of hyperblock formation
on these magnitudes is presented for a set of typical embedded multimedia
applications, introducing the non-trivial problems this aggressive ILP
technique causes in the increasingly widespread scenario of multi-
objective performance, energy and power optimization.

I. INTRODUCTION

The spread of systems based on Very Long Instruction Word
(VLIW) processors greatly depends on the flexibility these architec-
tures exhibit in applications affected by constraints on performance,
energy and power consumption. On the one hand, like superscalar
architectures, they meet performance requirements by offering the
possibility of executing several instructions per cycle in parallel. On
the other, unlike superscalar architectures, the hardware is consid-
erably simplified as it does not have to deal with the scheduling of
parallel instructions but confines itself to a plan of execution which is
statically pre-established in the compilation phase. Simplified hard-
ware means shorter critical paths and greater clock frequencies but
also, and above all, less energy consumption and power dissipation.

This shift of responsibility for scheduling from the control hard-
ware to the compiler requires greater awareness in using the compiler
than is required in classical architectures. A wrong decision in the
compiling stage may be equivalent to choosing an inappropriate
hardware configuration for execution of a given application.

If we consider the original objective of a VLIW architecture,
i.e. maximization of performance, it is clear that it is closely
connected with the capacity of the compiler to schedule in parallel
as many instructions as possible, that is, to obtain a high degree
of instruction level parallelism (ILP). Given the principle on which
an architecture based on a VLIW processor works, the number and
type of functional units affects the way in which the compiler can
schedule the operations in each long instruction. The presence of
several instances of a certain functional unit, for example, makes
it possible to schedule several operations using that type of unit
in the same clock cycle. Tests performed show, however, that even
when the number of functional units is increased there is an inherent
limit to the degree of ILP that can be obtained, depending on the
application involved. The presence of conditional branches is one of
the factors that most affects the compiler’s capacity to achieve high
ILP levels, mainly because it limits the possibility of code shifts.
Shifting a portion of code belonging to a particular branch above that
branch (speculative execution) is, in fact, extremely complex when
there are several branches. No less important is the latency affecting

branch instructions and the consequent large bubbles introduced in
the pipeline.

An essential technique to overcome this limit is the formation
of hyperblocks [1]. A hyperblock is formed by combining basic
blocks belonging to different execution paths. Conditional branches
are removed to form hyperblocks by transforming the original code,
an operation called if-conversion. If-conversion replaces conditional
branches of the code with comparison instructions that set the
Boolean content of one of the predicate registers. All the instructions
in a certain branch are thus converted to “predicate instructions”,
the execution of which depends on the value of a source operand
contained in a previously set predicate register. In this way, control
dependencies are transformed into dependencies between data.

Having been developed as an advanced technique to enhance ILP,
the effects on performance are well-documented. Less well-known is
the fact that with the spread of VLIW processors in systems in which
performance is not the only requirement the increase in performance
achieved by hyperblock formation clashes with the need to control
power and energy consumption. As we will see, the maximize ILP
paradigm should therefore be modified in the light of what could be
defined as the “collateral effects” that code transformations have on
energy consumption and the average amount of power dissipated.

In this paper we present a first attempt to analyse these problems
from a quantitative point of view. The analysis is carried out on a set
of typical embedded multimedia applications rather than the ad-hoc
kernel loops often used to demonstrate the effectiveness of hyperblock
formation.

The rest of the paper is organized as follows: the following
section deals with work on compiling techniques analysed from the
low power/energy point of view; in Section III we describe the
experimental framework used, and then in Section IV the experi-
ments performed. Finally, we provide concluding remarks and future
directions in Section V.

II. RELATED WORK

The focus of compiler optimizations has traditionally been on im-
proving performance (see for example [2] and the references therein).
Compiler optimizations have been widely used to achieve speedups
on array-based codes. Such optimizations are becoming increasingly
important in embedded multimedia systems. However, some other
performance indexes, like energy consumption and power dissipation,
play a significant role in this scenario. Unfortunately, there has
been little effort to analyze the effect of state-of-the-art compilation
techniques both on energy consumption and power dissipation. In [3]
Kandemir et al. present an experimental evaluation of several high-
level compiler optimizations (linear loop transformations, tiling,
unrolling, fusion, and scalar expansion) on energy consumption for
an architectural template based on SimpleScalar. In [4] Kremer
discuss general issues and challenges related to compilers for power
and energy management and address the question whether power,
energy, and performance should be considered separate compiler
optimization goals or not. Moreover, through simple examples he



shows that optimizing for minimal power dissipation or minimal
energy usage may have different metrics, and therefore result in
different optimization strategies. Madhavi and Lizy in [5] present
a quantitative study wherein they examine the effect of the standard
optimization levels of DEC Alpha’s cc compiler on power and energy
of the processor, finding that optimizations that improve performance
by reducing the number of instructions are optimized for energy.

Several low power/energy compiler optimizations have been pro-
posed. For power models based on bit-level switching activities as
its work notion, rescheduling instructions may target overall energy
usage by grouping instructions based on their particular bit patterns.
In addition to instruction scheduling a careful selection of register
names in the code generation phase of a compiler can result in code
sequences that have bit patterns with less switching activities, for
istance due to the reuse of “similar” register names [6]. In [7] Toburen
et al. propose a method of instruction scheduling which limits the
number of instructions which can be scheduled in a given cycle based
on some predefined per cycle energy dissipation threshold. They show
how is it possible to define the cycle threshold such that the maximal
amount of energy consumption can be saved for a given program
while incurring little to no performance impact. In [8] Shin and
Kim describe a post-pass optimal operation rearrangement method for
low-power VLIW instruction fetch. The method modifies operation
placement orders within VLIW instructions so that the switching
activity between successive instruction fetches is minimized.

In our work we concentrate on the influence of performance-
oriented compiler optimizations (specifically hyperblock formations)
on power dissipation and energy consumption.

III. EXPERIMENTAL FRAMEWORK

To carry out the tests presented here we used EPIC-Explorer [9]
a parameterized platform for Design Space Exploration of VLIW
architectures built on the Trimaran integrated compilation and perfor-
mance monitoring infrastructure [10]. EPIC-Explorer is a framework
that not only allows us to evaluate any instance of a platform in
terms of area, performance and power, exploiting the state of the
art in estimation approaches at a high level of abstraction, but also
implements various techniques for exploration of the design space.

L2
 U

ni
fie

d 
C

ac
he

Prefetch
Cache

Prefetch
Unit

Fetch
Unit

Instruction
Queue

D
ec

od
e 

an
d

C
on

tr
ol

 L
og

ic L1
 D

at
a

C
ac

he
L1

 In
st

ru
ct

io
n

C
ac

he

Predicate
Registers

Branch
Registers

General
Purpose
Registers

Floating
Point

Registers

Control
Registers

Branch
Unit

Branch
Unit

Integer
Unit

Floating
Point
Unit

Load/
Store
Unit

Fig. 1. Reference architecture based on VLIW core.

The VLIW architecture we will refer to is the HPL-PD [11]
architecture, which is a parameterized processor architecture designed
for research in instruction-level parallelism. The HPL-PD opcode
repertoire, at its core, is similar to that of a RISC-like load/store
architecture, with standard integer, floating-point (including fused
multiply-add type operations) and memory operations. The reference

architecture is shown in Figure 1. It comprises a VLIW micropro-
cessor core and a two-level memory hierarchy.

Fig. 2. Evaluation flow.

A configuration of the system generates an instance that is sim-
ulated and evaluated for a specific application according to the
scheme in Figure 2. The application written in C is first compiled.
Trimaran uses the IMPACT compiler system as its front-end. This
front-end performs ANSI C parsing, code profiling, classical code
optimizations and block formation. The code produced, together with
the High Level Machine Description Facility (HMDES) [12] machine
specification, represents the Elcor input. The HMDES is the machine
description language used in Trimaran. This language describes a
processor architecture from the compiler’s point of view. Elcor is
Trimaran’s back-end for the HPL-PD architecture and is to a large
extent parameterized by the machine description facility. It performs
three tasks: code selection and scheduling, register allocation, and
machine dependent code optimizations. The Trimaran framework also
consists of a simulator which is used to generate various statistics
such as compute cycles, total number of operations, etc..

Together with the configuration of the system, the statistics pro-
duced by simulation contain all the information needed to apply
performance and power consumption estimation models. The es-
timation models used are based on activity and inactivity values
for each of the functional blocks in the architecture. Periods of
activity/inactivity are obtained from the execution statistics, thus
providing an estimate of the average power dissipation [13]. Of
course, the energy consumed is obtained from the relation Etotal

�

Paverage
� clock cycles � clock period. The results presented in the

following sections use activity/inactivity power values referring to
a 0 � 1µ and 1 � 3V technology. We also assume a clock frequency of
200MHz. For further details about the platform, the reader is referred
to [9].

IV. EXPERIMENTAL RESULTS

In the following subsections we will analyze the impact of hy-
perblock formation on performance, power dissipation and energy
consumption. The class of applications being considered belongs to
the MediaBench suite [14] and represents quite a broad spectrum
of the possibilities of using a VLIW architecture in an embedded
multimedia environment. All tests were carried out on a Pentium
III-700MHz with 1.5GB RAM running GNU/Linux 2.4.9.

To have an idea of the dimensions of the benchmarks, input data
and compiling times, we can refer to Table I. As can be seen, with
hyperblock formation the compilation times are much longer (ranging



TABLE I
SET OF APPLICATION USED FOR THE EXPERIMENTS.

Application Compilation time (sec) Input code size ratio
without hyperblocks with hyperblocks size (KB) (with/without hyperblocks)

g721-encode 42 203 8 3.2
gsm-encode 813 2946 8 1.9
gsm-decode 660 2285 1 2.2
ieee810 34 118 1 2.7
jpeg 30 123 2 2.3
mpeg2-decode 250 909 4 3.3
mpeg2-encode 390 1492 6 1.8
adpcm-encode 20 118 295 3.1
adpcm-decode 18 113 1 2.4

TABLE II
EFFECT OF HYPERBLOCK FORMATION ON POWER, ENERGY, AND PERFORMANCE.

Without hyperblock formation With hyperblock formation
Application IU IPC Cycles Energy Power IPC Cycles Energy (mJ) Power (W)

(mJ) (W) (mJ) (W)

g721-encode 1 1.1 9345140 72.99 1.56 1.19 10324000 86.52 1.68
2 1.33 8047890 70.30 1.75 1.74 7772630 79.91 2.06
3 1.37 8001040 71.57 1.79 1.97 7347280 80.86 2.20
4 1.39 7970320 72.85 1.83 2.00 7370330 82.86 2.25

gsm-encode 1 1.04 11897600 92.50 1.55 1.17 6552780 54.52 1.66
2 1.19 11072200 91.50 1.65 1.40 5057140 50.15 1.98
3 1.22 11046200 93.36 1.69 1.45 4680360 49.58 2.12
4 1.23 10903800 94.73 1.74 1.49 4515980 49.74 2.20

gsm-decode 1 1.05 2407080 18.34 1.52 1.18 4849870 41.83 1.72
2 1.2 1981100 17.16 1.73 1.38 4164510 44.59 2.14
3 1.23 1980030 17.50 1.77 1.40 4479710 48.95 2.19
4 1.24 1979760 17.85 1.80 1.41 4835360 53.19 2.20

ieee810 1 1.4 5350400 56.97 2.13 1.27 8894350 88.28 2.25
2 1.64 4550110 55.33 2.43 1.82 6015110 88.33 2.94
3 1.68 4435620 56.17 2.53 1.85 5903520 88.95 3.01
4 1.7 4418790 57.22 2.59 1.87 5797790 89.55 3.09

jpeg 1 1.22 969826 8.06 1.66 1.23 959010 8.11 1.69
2 1.51 827219 7.78 1.88 1.69 778839 7.63 1.96
3 1.65 802335 7.91 1.97 1.84 754684 7.69 2.04
4 1.72 789846 8.00 2.02 1.91 744528 7.79 2.09

mpeg2-decode 1 1.14 8289240 78.03 1.88 1.25 7263270 70.25 1.93
2 1.28 6027300 76.04 2.27 1.46 5896990 67.02 2.52
3 1.3 5919980 76.71 2.34 1.49 5836660 68.43 2.59
4 1.31 5837790 77.42 2.39 1.50 5823250 69.63 2.65

mpeg2-encode 1 1.19 46084700 408.09 1.77 1.31 38432201 391.44 1.89
2 1.4 35802400 395.74 2.21 1.57 31656405 378.12 2.44
3 1.47 34896900 398.52 2.28 1.61 30943440 382.56 2.56
4 1.48 34511700 403.10 2.34 1.65 30743420 390.87 2.61

adpcm-encode 1 1.09 9397340 72.36 1.54 1.20 8259460 68.94 1.67
2 1.38 7426770 66.58 1.79 2.15 4919770 60.26 2.45
3 1.38 7426330 67.89 1.83 2.52 4683520 64.46 2.75
4 1.38 7426330 69.20 1.86 2.52 4683520 65.29 2.79

adpcm-decode 1 1.13 7455300 58.61 1.57 1.37 8323380 76.99 1.85
2 1.48 5706770 53.33 1.87 1.74 6577180 71.87 2.19
3 1.48 5706480 54.33 1.90 1.81 6331410 72.06 2.28
4 1.48 5706330 55.34 1.94 1.79 6380680 73.38 2.30

from 350% to 620%). A great impact is observed on the size of the
generated assembly code which increase by 250% on average.

Table II gives the results obtained with various numbers of func-
tional units for integer operations, with and without hyperblocks. As
we are not interested in variations in the parameters of the memory
hierarchy, we assume a 100% cache hit rate. The number of functional

units of other kinds is considered to be fixed, as is the number of
registers in each of the register files and the cache configuration.
The values are given in Table III. This choice is not only necessary
for greater legibility but is also the most natural one as the integer
units are the most used and therefore the units that best represent
an increase in the resources that can be exploited by hyperblock



TABLE III
REFERENCE ARCHITECTURE.

Functional Units
Integer Units 1, 2, 3, 4
Floating Point Units 1
Memory Units 1
Branch Units 1

Register Files Size
General Purpose 64
Floating Point 64
Predicate 64
Control 64
Branch Target 16

Cache Configuration
L1 Instruction Size/Block size/Associativity 64KB/64B/1
L1 Data Size/Block size/Associativity 64KB/64B/1
L2 Unified Size/Block size/Associativity 256KB/128B/4

formation to enhance ILP.

A. Performance Perspective

Before analyzing the results from the power/energy point of view,
it is worthwhile making some observations about the traditional
objective of hyperblock formation, i.e. an increase in performance.
This is of fundamental importance because some of the phenomena
we observe when analyzing performance have repercussions on the
power/energy characteristics.

If, considering a certain application, we run down Table II it is
evident that an increase in the number of functional units causes
a decrease in the number of execution cycles. Obviously, as already
mentioned, the presence of several functional units provides the com-
piler with more resources for the parallel scheduling of instructions.
This is evident in the column referring to the IPC achieved, defined
as:

IPC �
instruction count

clockcyles
(1)

The increase in the IPC with varying numbers of functional units is
even more marked if we observe the results obtained by enabling
hyperblock formation. As was to be expected, in fact, as soon as
the limits imposed by the conditional branches are removed, code
moving operations are facilitated. Hyperblock formation, therefore,
cannot but increase the IPC. But from a performance point of
view, is the ultimate aim that of achieving the highest possible
IPC values? The answer is no, as can be observed by comparing
gsm-decode and adpcm-decode with and without hyperblock
formation. Analytically this can be accounted for by obtaining the
number of cycles from Equation (1):

clock cycles �
instruction count

IPC
A higher IPC is therefore only synonymous with better perfor-

mance if the increase in the number of instructions executed due to
hyperblock formation does not exceed the increase in the IPC. This,
however, does not happen, as can be seen, for example, in the in-
struction mix shown in Figure 3 which refers to the adpcm-decode
application for 4 integer units.

So although the code transformations and duplications performed
during hyperblock formation certainly increase the IPC, they may
cause an increase in the number of instructions that does not compen-
sate for the advantages in terms of performance. The consequences
of this emerge when we address the problem from an energy/power
perspective.

Fig. 3. Instruction mix with and without hyperblock formation for the
adpcm-decode application for 4 integer units.

B. Energy/Power Perspective

Although they are at times erroneously used as synonyms, it should
be stressed that in our perspective power and energy objectives are
to be considered as two independent quantities. Energy consumption,
for example, may be of decisive importance in designing mobile
devices running on batteries. Power dissipation, on the other hand,
which is linked to the amount of heat the system is subjected to,
is a fundamental element for aspects such as packaging, which
directly affect the final cost of implementing the system. As we will
see, the nature of the architecture considered, which allows several
instructions to be scheduled in parallel, as well as the use of a code
transformation technique like hyperblock formation, shows up this
conceptual difference even more clearly.

If we run down the columns referring to energy consumption with
increasing numbers of functional units in Table II, we observe that a
decrease in the number of cycles does not correspond to a decrease in
energy consumption. The values are relatively constant, following a
parabolic trend with a slight initial drop of 4-5% and then a rise. In
a traditional architecture we would expect executing fewer cycles
to correspond to “less work” and thus less energy consumption.
But in architectures with multiple issue like a VLIW architecture,
the reduction in the execution cycles derives from the fact that the
instructions are executed in parallel rather than sequentially. So if
an instruction of a certain kind, associated with the use of certain
functional units, consumes a certain quantity of Joules, moving it
back or forward will by no means annul this consumption. The
overall energy consumption will therefore depend on the number of
instructions executed rather than the number of cycles.

How does hyperblock formation affect this? On the basis of
the previous remarks, and reconsidering Equation (1) from another
perspective, we get:

Energy ∝ clockcycles � IPC

So, with the same number of functional units, with the introduction
of hyperblock formation we will have:

Energynew

Energyold
∝

clock cyclesnew
� IPCnew

clock cyclesold
� IPCold

As the introduction of hyperblock formation cannot but increase
the IPC, in a project with constraints on energy consumption it is
necessary to assess whether the corresponding variation in the number
of execution cycles balances the variation in the IPC.

While it is clear that following an increase in the number of
execution cycles the introduction of hyperblock formation gives no



advantages as far as energy consumption is concerned, the opposite
does not hold. That is, a decrease in the number of cycles due
to hyperblock formation does not mean an advantage in terms of
energy. This happens, for example, in g721encode, where we have
a 3 to 8% increase in performance but the IPC increase due to the
introduction of hyperblock formation is such as to increase energy
consumption by almost 14%. For the sake of clarity the percent
variations are given separately in Table IV.

TABLE IV
EFFECT OF HYPERBLOCK FORMATION ON PERFORMANCE, POWER, AND

ENERGY.

Application IU IPC Cycles Energy Power

g721-encode 1 8.6% 10.5% 18.5% 7.3%
2 30.8% -3.4% 13.7% 17.7%
3 44.3% -8.2% 13.0% 23.0%
4 44.2% -7.5% 13.7% 23.0%

gsm-encode 1 12.9% -44.9% -41.1% 7.0%
2 17.4% -54.3% -45.2% 20.0%
3 19.4% -57.6% -46.9% 25.3%
4 20.4% -58.6% -47.5% 26.8%

gsm-decode 1 12.7% 101.5% 128.1% 13.2%
2 14.7% 110.2% 159.9% 23.7%
3 14.0% 126.2% 179.7% 23.6%
4 13.0% 144.2% 198.0% 22.0%

ieee810 1 9.7% -39.8% -35.5% 5.7%
2 -10.2% -24.4% -37.4% 20.7%
3 -9.3% -24.9% -36.9% 19.0%
4 -9.3% -23.8% -36.1% 19.3%

jpeg 1 0.9% -1.1% 0.6% 1.8%
2 11.6% -5.8% -1.9% 4.2%
3 11.3% -5.9% -2.8% 3.4%
4 11.3% -5.7% -2.6% 3.4%

mpeg2-decode 1 10.2% -12.4% -10.0% 2.7%
2 14.0% -2.2% -11.9% 11.0%
3 14.5% -1.4% -10.8% 10.5%
4 14.3% -0.2% -10.1% 10.9%

mpeg2-encode 1 10.3% -16.6% -4.1% 6.7%
2 12.3% -11.6% -4.5% 10.4%
3 9.6% -11.3% -4.0% 12.1%
4 11.4% -10.9% -3.0% 11.7%

adpcm-encode 1 10.1% -12.1% -4.7% 8.4%
2 55.8% -33.8% -9.5% 36.6%
3 82.6% -36.9% -5.0% 50.6%
4 82.6% -36.9% -5.6% 49.6%

adpcm-decode 1 21.2% 11.6% 31.4% 17.7%
2 17.6% 15.3% 34.8% 16.9%
3 22.3% 11.0% 32.6% 19.5%
4 20.9% 11.8% 32.6% 18.6%

As can be observed in Table II the power dissipation values follow
a more homogeneous trend than the energy consumption values. The
dissipated power grows, in fact, both when the number of functional
units increases and when hyperblock formation is enabled. Whereas
variations in the number of functional units led to a limited oscillation
in energy consumption, the same does not apply to average power
dissipation, which follows an increasing trend. It is clear that as
power is a measure of the speed at which energy is consumed at
a given instant, it cannot but increase as the average number of
operations executed per cycle, the IPC, grows. Even in the hypothesis
that the larger number of functional units are not exploited for parallel
scheduling, and thus with a view to increasing the IPC, the power
would still be greater because the additional units, although inactive,

would still cause static power consumption. By the logic behind
hyperblock formation, the transformations it produces cannot but
reinforce this greater instantaneous consumption effect and thus lead
to an increase in average consumption. So although from the energy
point of view a gain is possible in some cases, power dissipation
grows quite considerably. In Table IV we can observe values ranging
from 17% to 50%.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a first study of hyperblock formation from the power
and energy perpective has been carried out. The results showed
that the way this aggressive code optimization influences each of
these two magnitudes is different, both considering a quantitative and
behavioural point of view. We found that average power, assuming a
fixed hardware configuration (e.g. same functional units and register
files), can increase up to 40-50% due the IPC improvement. On
the other hand, effects on energy consumption showed to be less
predictable, not being directly related to the performance gain that
hyperblock formation attemps to achieve. For our future work we
would like to investigate the performance/power/energy interaction
between the hyperblock formation compiler optimization technique
and the architectural parameters of a VLIW-based system with the
aim to define new multiobjective design space exploration strategies.

REFERENCES

[1] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective compiler support for predicated execution using
the hyperblock,” in International Symposium on Microarchitecture, Dec.
1992, pp. 45–54.

[2] M. Wolfe, High Performance Compilers for Parallel Computing. Pear-
son Education POD, 1995.

[3] M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye, “Influence
of compiler optimizations on system power,” in Design Automation
Conference, Los Angeles, California, USA, 2000, pp. 304–307.

[4] U. Kremer, Low Power/Energy Compiler Optimizations. CRC Press,
2004, ch. 35.

[5] M. G. Valluri and L. John, “Is compiling for performance == compiling
for power?” in Annual Workshop on Interaction between Compilers and
Computer Architectures, Monterrey, Mexico, Jan. 2001.

[6] M. Kandemir, N. Vijaykrishnan, M. Irwin, W. Ye, and I. Demirkiran,
“Register relabeling: A post compilation technique for energy reduction,”
in Workshop on Compilers and Operating Systems for Low Power,
Philadelphia, Pennsylvania, Oct. 2000.

[7] M. Toburen, T. M. Conte, and M. Reilly, “Instruction scheduling for
low power dissipation in high performance microprocessors,” in Power
Driven Microarchitecture Workshop, Barcelona, Spain, June 1998.

[8] D. Shin and J. Kim, “An operation rearrangement technique for low
power vliw instruction fetch,” in Workshop on Complexity-Effective
Design, 2000.

[9] G. Ascia, V. Catania, M. Palesi, and D. Patti, “EPIC-Explorer: A param-
eterized VLIW-based platform framework for design space exploration,”
in First Workshop on Embedded Systems for Real-Time Multimedia
(ESTIMedia), Newport Beach, California, USA, Oct. 3–4 2003.

[10] “An infrastructure for research in instruction-level parallelism,” http://
www.trimaran.org/.

[11] V. Kathail, M. S. Schlansker, and B. R. Rau, “HPL-PD architecture
specification: Version 1.0,” Compiler and Architecture Research HP
Laboratories Palo Alto HPL-93-80, Tech. Rep., 2000.

[12] J. Gyllenhaal, “A machine description language for compilation,” Mas-
ter’s thesis, Department of Electrical and Computer Engineering, Uni-
versity of Illinois, Urbana IL, Sept. 1994.

[13] G. Cai and C. H. Lim, “Architectural level power/performance optimiza-
tion and dynamic power estimation,” in Cool Chips Tutorial colocated
with MICRO32, Nov. 1999, pp. 90–113.

[14] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in International Symposium on Microarchitecture, Dec. 1997.


