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Abstract  
Value Prediction (VP) and Instruction Reuse 

(IR) are the two techniques used to capture the 
redundancy in programs.  This paper proposes a 
method to combine both the IR and VP in order to 
reuse or predict the result of an instruction.  
Confidence values are associated with the predicted 
values to minimize the mispredictions. When an 
instruction mispredicts, only the consumers of the 
mispredicted instruction are re-executed rather than 
flushing the instructions following the mispredicted 
instruction.  A new stage called confirm stage is added 
after the writeback stage of a 6-deep pipeline to enable 
selective reexecution. Only those instructions executing 
with the predicted operands go through the confirm 
stage so that the instructions not using the predicted 
operands are unaffected by this additional stage. 
Further branch misprediction penalty is not increased 
because of this new stage since branches do not use 
predicted operands.  Finally, simulation results show 
an average increase in speedup of 10% on a 4-wide 
superscalar processor. 
1. Introduction and Related Work 

Modern processors remove most artificial 
constraints on execution throughput. Out-of-order 
processors remove artificial dependencies imposed by 
instruction ordering; register renaming removes false 
dependencies; and aggressive branch prediction 
schemes greatly reduce serialization of instruction 
execution due to branches. Therefore, the bottleneck 
for many workloads on current processors is the true 
dependencies in the code. They force the instructions to 
be serialized reducing the degree of ILP.  Data 
Speculation is a technique that collapses this 
dependency chains by predicting the result of the 
instruction so that the dependent instructions are 
speculatively executed. 

The amount of redundancy present in the 
program i.e. many instructions perform the same 
computation and produce the same result again and 
again, forms the basis of data speculation. Many 
studies [1, 2, 3, 4] show that more than 75% of the 
dynamic instructions produce the same result as before.  
VP [2, 5] and IR [6] are the two techniques that have 
been proposed to exploit this redundancy.  Both the 
techniques try to improve the performance by 
removing the data dependencies. 
 Both VP and IR use different approaches in 
exploiting the redundancy in the program. VP predicts 
the results of instructions (or, alternatively, the inputs 

to other instructions) based on the previously seen 
results, performs computation using the predicted 
values, and confirms the speculation at a later point. 
The critical path is shortened since the instructions that 
would normally be executed sequentially could be 
executed (speculatively) in parallel. On the other hand, 
IR recognizes that a certain computation chain has 
been performed before and therefore need not be 
performed again, i.e., it “splices out” a chain of 
computation from the critical path. The study in [7] 
shows the difference between IR and VP and how they 
interact with the processor pipeline.  It also shows that 
84% to 97% redundancy in the program can be 
captured. 

In this paper both IR and VP are used to 
capture the maximum amount of redundancy possible.  
The study in [8] shows a mixed predictor using both IR 
and VP. Using a single Mixed Buffer for both IR and 
VP in [8] leads to conflict misses. Confidence values 
are not associated with the values predicted in [8].  The 
details regarding the selective reexecution of 
instructions that have consumed mispredicted operands 
are not clearly specified in [8]. In this paper we have 
solved the above said problems and a new stage called 
confirm stage is added that aids in reducing the 
misprediction penalty by selective re-execution of 
mispredicted instructions and the instructions truly 
dependent on it. 
1.1 Overview 

This paper is organized as follows: section 2 
describes the value prediction architecture used, section 
3 describes the instruction reuse architecture used, 
section 4 describes the processor pipeline using both 
VP and IR, section 5 shows the simulation results and 
section 6 summarizes and concludes the work. 
2. Value Prediction Architecture 
 This section describes the Value Prediction 
Architecture used in this paper. 
2.1 Value Prediction Table 
 Several Architectures have been proposed for 
value prediction including Last Value Prediction, 
Stride Prediction, Context-Based Prediction and 
Hybrid approaches. In this paper we use a hybrid of 
stride and context-based predictor as proposed in [9].  
Confidence values are associated with the predicted 
values as proposed in [10]. 
2.1.1 Stride 
 A stride predictor keeps track of not only the 
last value brought in by an instruction, but also the 
difference between that value and the previous value. 
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This difference is called the stride. The predictor 
speculates that the new value seen by the instruction 
will be the sum of the last value seen and the stride. In 
this paper two-delta stride predictor is used which 
replaces the predicted stride with the new stride only if 
the new stride has been seen twice in a row.  A warmup 
counter is associated with each entry so that initial 
mispredictions are avoided and the stride predictor 
starts predicting only after the warmup counter reaches 
a threshold.   
2.1.2 Context 
 A context predictor bases its prediction on the 
last several values seen. In this paper the last 4 values 
produced by an instruction are used. A table called the 
Value History Table (VHT) contains the last 4 values 
produced for instructions in the table. Another cache, 
called the Value Prediction Table (VPT), contains the 
actual values to be predicted. An instruction’s PC is 
used to index into the VHT, which holds the past 
history of the instruction. The 4 history values in this 
entry are combined and folded using an xor hash into a 
single index into the VPT [11]. This entry in the VPT 
contains the value to be predicted. Confidence counters 
are associated with each entry in VPT to guide 
prediction.  Warmup counter is also used to avoid 
initial mispredictions. 
2.1.3 Hybrid 
 In this paper hybrid predictor as proposed in 
[9] is used.  It consists of a stride predictor and a 
context predictor, which are as described above.  The 
stride information is added in the VHT entry.  
Confidence counters guide the prediction.  There are 
separate confidence counters for stride and context 
predictors.  On correct prediction the confidence 
counter is incremented by the increment bonus and on 
misprediction it is decremented by the misprediction 
penalty.  If both the predictors hit then the prediction 
that has higher confidence is used.  If the confidences 
are equal then the preference is given to stride predictor 
as in [10].  Further the values are predicted only if the 
confidence is above the prediction threshold.  
Replacement counter is associated with each entry in 
the VHT.  This counter aids in preventing replacement 
of highly predictable instruction due to conflict miss.  
The number of entries in the VHT is 4K and that in the 
VPT is 8K.  The misprediction penalty is 4, increment 
bonus is 2 and the prediction threshold is 6.  The 
saturating limit in the counters is 15. 
3. Instruction Reuse Architecture 
 This section describes the instruction reuse 
architecture used in this paper.  
3.1 Reuse Buffer 
 In [6] various schemes for dynamic instruction 
reuse has been specified that include Sv, Sn, Sn+d.  In this 
paper we use Sv that tracks the operand values of the 
instruction.  In the reuse buffer operand values and the 

corresponding result are stored.  When an instruction is 
decoded, its current operand values are compared with 
those stored in the RB. If they are the same, then the 
result stored in the RB is reused. This comparison of 
available operands with the operands stored in the 
reuse buffer is the reuse test.  The reuse buffer is 
indexed using the instruction’s PC.    The reuse buffer 
is 4-way associative so that 4 different results of the 
instruction can be stored.   

Replacement counter is associated with each 
entry, which is incremented by increment bonus on hit 
i.e. the referred instruction can be reused and is 
decremented by misprediction penalty on miss i.e. the 
entry for the instruction is present, but can’t be reused 
because the current operands are not present.  When a 
new instruction conflicts with the instruction already 
present in the buffer, it is not immediately replaced.  
But the replacement counter of the instruction present 
in the buffer is decremented.  If the value in the 
replacement buffer is less than the replacement 
threshold then the new instruction replaces the old 
instruction.  Thus the instruction that can be highly 
reused is not replaced. The reuse buffer used in this 
paper contains 1K entries. 

Next section describes how the reuse buffer 
and the hybrid predictor interact in the pipeline. 
4. Processor Pipeline using both Value Prediction 
and Instruction Reuse 
  The processor pipeline using both 
hybrid predictor and instruction reuse looks as shown 
in Figure 1. 

 
Figure 1 

 
4.1 Unmodified Pipeline 
 The pipeline assumed in this paper is 
described in this subsection.  In the fetch stage the 
instructions are fetched and put into the fetch queue.  In 
the dispatch stage the instruction is decoded and an 
entry is allocated for that instruction in the reorder 
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buffer.  The entry in the reorder buffer functions as the 
Reservation Station (RS).  RS takes care of fetching the 
operands and issuing the instruction to the 
corresponding functional unit and committing the 
instructions in order.  The RS has the status 
information denoting at which stage of the pipeline the 
instruction is currently in. 
 The following subsections describe how this 
pipeline is modified to enable the use of both VP and 
IR. 
4.2 Modified Pipeline 
4.2.1 Fetch Stage 
 In the fetch stage of the processor, the value 
prediction table and the reuse buffer is accessed for the 
range of PCs being fetched. The table lookups could 
potentially take multiple cycles, and needs to complete 
by the time the instruction enters the dispatch stage. 
Efficient techniques, like those proposed in [12], are 
needed to handle multiple value predictions, but 
modeling this is beyond the scope of this paper. 
4.2.2 Dispatch Stage 

In the dispatch stage, an entry in the reorder 
buffer is allocated for in order commit of the 
instructions. The instruction is decoded, and register 
renaming is done, where the instruction is allocated a 
physical register. The allocated physical register is 
normally used to hold the result value for an instruction 
but it is also used to temporarily hold the predicted 
value for an instruction.  To the register status 
information, which normally contains the information 
of the producer to that register, an additional bit is also 
associated which is set when the register holds the 
predicted result.  Confidence value for the predicted 
result is also added to the register status information. A 
prediction flag is also added to the RS to indicate 
whether the instruction has predicted or not.  Three bits 
are added to RS for each operand being used.  One bit 
is set when the instruction is issued with the predicted 
operand; the second is set when that predicted operand 
is mispredicted; the third is set when the actual operand 
becomes ready. These bits are known as 
is_operand_predicted bit, is_operand_mispredicted bit 
and is_operand_ready bit respectively. 

Branch instructions are not executed with 
predicted operands to avoid spurious branch 
mispredictions.  In the reuse buffer the target of the 
branch is stored.  When a branch instruction access 
results in a hit in the reuse buffer and passes the reuse 
test, branch mispredictions are detected in the dispatch 
stage itself.  The effective address calculation for loads 
and stores do not use predicted operands, while the 
result of load is predicted. 
4.2.2.1 Instruction Flow on Reuse Buffer Hit 

If there is a hit in the reuse buffer then the 
reuse test is performed, provided the operands are 
available as predicted operands or actual operands.  If 

the test is successful and the operands are actual 
operands then the instruction directly moves to the 
commit stage writing the result to the register as 
labeled (1) in Figure 1.   

If the reuse test is successful with predicted 
operands, the hit confidence is calculated.  Hit 
confidence is the minimum of the confidence values of 
the predicted operands.  If VP returns a predicted value 
then the predicted value’s confidence is compared with 
the hit confidence.  If the hit confidence is greater then 
the prediction flag in the destination register is set, the 
result from the reuse buffer is written in the register, 
the prediction confidence in the register is made equal 
to the hit confidence and the instruction moves to the 
confirm stage setting the prediction flag in the RS as 
shown by (2) in Figure 1.  If the hit confidence is less 
then the instruction decides to use the predicted values 
from the VP, rather than the value from the reuse 
buffer obtained using the predicted operands.  So the 
predicted result from the VP is written into the register 
along with the prediction confidence, the predicted flag 
in the register as well as in the RS is set.  The 
instruction then moves to the issue stage and waits for 
the actual operands.  This enables in avoiding the use 
of predicted values with low confidence. 
4.2.2.2 Instruction Flow on Reuse Buffer Miss 
 If there is a miss in the reuse buffer then 
actions are similar to the earlier case in which hit 
confidence is less than the prediction confidence.  If no 
prediction is available from the VP then the instruction 
waits in the issue stage for the operands to be available, 
either in predicted or in actual form. 
4.2.3 Issue Stage 
 In the issue stage, the instruction waits for the 
operands to be available.  If the predicted flag in the 
RS is set then the instruction issues only after the 
actual operands are available. If the prediction flag is 
not set then the instruction can issue with the predicted 
operands.  This makes sure that the instruction whose 
result is predicted executes only with the actual 
operands and the instruction that has not predicted its 
result can issue with the predicted operands.  If the 
instruction that has predicted the result is allowed to 
use the predicted operands then multiple reexecution of 
the instructions using the predicted result of this 
instruction is possible.  This also makes sure that an 
instruction is executed at most twice in case of 
misprediction. 
4.2.4 Write Back Stage 
 After execution, the instruction enters the 
writeback stage.  If the predicted flag in the RS is set, 
the result obtained is the correct result of the 
instruction, as it would have issued only with the actual 
operands. This correct result is compared with the 
predicted result.  If both are equal then the register 
status for the destination is cleared and the result is 
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published in the Common Data Bus (CDB).  The 
dependent instructions waiting on the result of this 
instruction can be issued.  If the dependent instruction 
has been issued with the predicted result then the 
corresponding operand’s is_operand_mispredicted bit 
is not set and the is_operand_ready bit is set. 
 If there is a misprediction then the correct 
value is published in the CDB.  The register status of 
the destination is also cleared. The instruction waiting 
on the result of this instruction can be issued. If the 
dependent instruction has been already issued with the 
predicted operand, then the corresponding operand’s 
is_operand_mispredicted bit is set and the 
is_operand_ready bit is also set. 

If both is_operands_predicted and prediction 
flag of the RS are not set then the instruction has used 
the actual operands, hence the register status is cleared.  
The instruction moves to the commit stage as shown by 
(3) in Figure 1 for all the above cases. 

Else the instruction has used the predicted 
operands then the predicted flag in the RS is set; the 
predicted value is written into the register along with 
the prediction confidence, which is now the minimum 
of the confidence values of the operands and the 
prediction flag in the register is also set.  The 
instruction then moves to the confirm stage as shown 
by (4) in Figure 1.  The instructions dependent on this 
instruction can use the predicted result and can be 
issued. 

The reuse buffer and the value predictor are 
also updated in this stage. 
4.2.5 Confirm Stage 
 When instruction is in the confirm stage, RS 
checks whether all its operands are ready.  If all the 
operands are ready and no operand has been 
mispredicted, which can be found from the 
is_operand_mispredicted bit, the instruction moves to 
the commit stage as shown by (5) in Figure 1.  The 
register status information is cleared and the 
instructions dependent on this instruction can be 
issued.  If the dependent instruction has been issued 
with the predicted operand then the corresponding 
operand’s is_operand_mispredicted bit is not set and 
the is_operand_ready bit is set. 
 If all the operands are ready and the operands 
are mispredicted then the instruction’s 
is_operand_predicted flags are cleared and the operand 
moves back to the issue stage as shown by (6) in Figure 
1.  The misprediction recovery for the dependent 
instructions will take place in the writeback stage, as  
the predicted flag for this instruction is set and the 
instruction is executing with the actual operands. 
5 Simulations 
 The simulator used in this study was derived 
from the SimpleScalar/Alpha 3.0 tool set [13], a suite 
of functional and timing simulation tools for the Alpha  

Table 1. Baseline Architecture 
AXP ISA. The timing simulator executes only user-
level instructions, performing a detailed timing 
simulation of an aggressive 4-way dynamically 
scheduled microprocessor with two levels of 
instruction and data cache memory. Simulation is 
execution-driven, including execution down any                                 
speculative path until the detection of a fault, TLB 
miss, branch misprediction, or load misspeculation.  
The baseline architecture used is shown in table 1. 

The benchmark programs analyzed are listed 
in Table 2 along with their inputs and number of 
dynamic instructions executed on the timing simulator. 
Four of the integer programs from SPEC 2000 
benchmark suite (gcc, vortex, vpr, twolf) are chosen. 
The -fastfwd option in SimpleScalar/Alpha 3.0 is used 
to skip over the initial part of execution.  Results are 
then reported for simulating each program for 1 billion 
committed instructions. 

Benchmark  Input  Number of 
Simulated Inst. 

Gcc integrate.i 1 billion 
Vortex lendian1.raw 1 billion 
twolf  Ref 1 billion 
Vpr net.in, arch.in 1 billion 

Table 2.  Benchmark Programs 
 

5.1 Results 
 The simulation results are shown in Figure 2.  
The maximum speedup is obtained for vortex and is 
1.147.  The average speedup over base is 10%. 

Instruction 
fetch 

4 instructions per cycle, one taken 
branch per cycle. 

Instruction 
cache 

16K bytes, 2-way set associative, 6 
cycles miss latency. 

Data cache 
16K bytes, 2-way set associative, 6 

cycles miss latency. 
Branch 

predictor 
Bimodal predictor with bimod table 

containing 2048 entries 

Speculative 
execution 

Decode, dispatch, issue: 4 instructions 
per cycle, ROB size: 32, LSQ size: 16, 

Optimistic memory disambiguation 
with forward. 

 
Functional 

units 
4 integer ALUs, 1 integer mult/div, 1/1 
load/store, 4 fp ALUs, 1 fp mult/div. 

Functional 
unit latency 
(total/issue) 

Integer ALU-l/l, load/store l/l, integer 
MULT 3/l, integer DIV 20/19, 

FP adder 2/l, FP MULTI 4/1, FPDIV 
12/12, FP SQRT 24/24. 
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1.147 1.124 1.124 1.096

0

0.5

1

1.5

vortex  vpr twolf gcc

speedup

 Figure 2 speedup over base 
 

Table 3 shows the percentage of predictions 
by VP and percentage of hits in IR over the total 
number of instructions committed.  Total predictions 
refer to percentage of instructions for which confidence 
is above the threshold.  Total mispredictions refer to 
the percentage of instructions with mispredicted values.  
Used Predictions refer to the percentage of instructions 
for which the predicted values are used.  Predicted 
values may be unused if the instruction hits the reuse 
buffer with actual operands or with predicted operands 
having higher hit confidence.  Reuse Buffer Hits refer 
to the total number of hits in the reuse buffer.  Used 
reuse buffer hits refer to the number of reuse buffer hits 
utilized.  Reuse buffer hits may be unused if the buffer 
is hit with predicted operands with less confidence. 

  
Table 3. Percentage of Predictions and 

Reuse Buffer Hits 
6 Conclusions 
 This paper proposes an effective way of 
combination of VP and IR.  Adding an additional stage 
in the pipepline minimizes the value misprediction 
penalty.  It is also possible to access the reuse buffer in 
the confirm stage so that the reexecution can be 
bypassed.  By using more aggressive value prediction 
techniques better performance can be achieved.  
Further the reuse buffer replacements can be guided by 

the prediction confidence of the operands, which are 
being updated in the buffer. 
 Deeper pipelines with largely separated issue 
and writeback stages may increase the value 
misprediction penalty.  This may seem to be a great 
disadvantage but the fact that deeper pipelines help in 
achieving speedup due to reuse buffer hits will 
alleviate the large misprediction penalty.  Therefore it 
does make a lot of sense to combine both VP and IR.  
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Benchmark vortex Vpr twolf gcc 

Total 
Predictions 

17.6 19.7 20.7 2.7 

Total 
Mispredictions 

2.4 4.2 3.3 0.04 

Used Predictions 16.6 18.9 20.5 2.6 

Used Predictions 
Mispredicted 

2.3 4.1 3.2 0.04 

Reuse Buffer 
Hits 

4.7 4.5 5.4 6.2 

Used Reuse 
Buffer Hits 

4.6 4.4 5.3 6.2 


