
Design of a Self-evolving Scalable Matching
Network for OCEAN

Pradeep Padala and Michael P. Frank
Computer & Information Science & Engineering

University of Florida
Gainesville, Florida 32611–6120

Email: {ppadala,mpf}@cise.ufl.edu

Poster Paper, To be presented at the International Conference on High Performance Computing (HiPC’03)

Abstract— OCEAN (Open Computation Exchange and Arbi-
tration Network) provides a market-based framework for grid
computing. We developed a self-evolving, scalable matching
network for finding suitable resources. In this paper, we explain
OCEAN architecture briefly and detail the design choices for the
matching network.

I. INTRODUCTION

Grids[1] have become the favourite choice for executing
compute intensive and data intensive scientific applications. As
more and more people start deploying grid resources, there is
a growing need for finding suitable resources. OCEAN (Open
Computation Exchange and Arbitration Network) provides a
market-based framework for locating resources.

The key players in OCEAN market are sellers and buyers.
The buyers typically have a computation that needs to be per-
formed, while the sellers have access to idle grid resources that
can execute the computation in question. We have developed
a self-evolving matching network that finds a list of sellers
matching buyer’s requirements. The buyer can then negotiate
with various sellers and ask OCEAN to transport and execute
his jobs.

Note that an OCEAN node can be deployed by an indi-
vidual user or by an administrator managing a virtual orga-
nization(VO) in a grid. In this paper, we describe OCEAN
architecture briefly and the matching protocol in detail.

II. OCEAN ARCHITECTURE

The OCEAN is composed of OCEAN nodes. Each node
can act as a buyer or seller or both. The primary components
of OCEAN can be divided into two parts: Market components
and Transport components. The market components, matching,
negotiation and accounting provide the market framework for
resource sharing. The transport components included mobility,
security and communication. These components provide fea-
tures for transporting messages and jobs securely. Note that,
OCEAN is interoperable with existing grid infrastructure like
Globus[2]. OCEAN provides a market-oriented framework
that can be used to enhance the services provided by various
grid middleware. Figure 1 shows the ocean architecture.

The applications make use of OCEAN market services,
which in turn use transport services. The transport services
are implemented using existing run time platforms and specific
language environments.

For a detailed description of interaction of among compo-
nents, see [3]

III. LOCATING DESIRED PEERS : DESIGN OF MATCHING
NETWORK

The core of our approach consists of a matching network
that provides mechanisms for quickly matching the resources.
It should be self-evolving and scalable. We have chosen a
Peer-to-Peer matching network with efficient evolution and
matching protocols.

In the following section we describe our motivation and
various challenges faced in designing such a network.

A. Network Scenarios

The task of locating a suitable peer base which can provide
the required resources is a difficult task. Constructing such a
network can be approached in many ways:
• Client/Server: The advantage would be that we have

a simple network where everyone is easy to locate.
Disadvantage is that it is not scalable and has a single
point failure. There is a single owner which incurs all
the expense.

• Distributed Servers: The advantage would be that we
have a simple network where everyone is easy to locate.
Disadvantage is that it is not scalable and again has a
single owner which incurs all the expense.

• Peer to Peer: Advantage would be very scalable, distribut-
ing the traffic over all nodes and there is no single point
of failure. A disadvantage is that it is more difficult to
find a desirable peer.

For the reasons of distributed ownership and scalability we
have adopted the last approach. Ocean’s peer to peer matching
system is developed similar to Gnutella. The protocol includes
discovery of unknown peers, and provides a flexible search
mechanism which supports for any of the three main methods
of match arbitration (Resource Listing, Benchmark, and Probe



MobilityCommunication

Security

OCEAN transport components

GSI

Globus transport components

globus_io GridFTP

Matching Negotiation

Accounting

OCEAN market components

Specific Language Environments / Run time platforms
(e.g. Java VM, .Net, Linux, Windows

OCEAN Applications

Fig. 1. OCEAN Architecture

Based). It differs from Gnutella in that message routing
information travels with the message.

Search messages in the network are broadcast to all nodes
with in a certain region of the source node. If a node receives
a search request and it matches the request it will send back
a complete resources description and a price. The initiator of
this search can now establish a contract with this resource for
the given price, if the initiator determines that it is worthwhile.

B. Network Extensibility

The protocol is easily extensible to include simple hier-
archical peer to peer organization techniques such as super
nodes. Super Nodes have been used by LimeWire developers
to solve Gnutella scaling issues via the UltraPeer Protocol.
The shielding of network traffic and routing optimizations
demonstrated with UltraPeer concept[4] can be adapted to
enhance the OCEAN Matching system in two important ways:
• Leaf Node Grouping and Shielding:

If leaf nodes join super nodes based on their purpose,
traffic shielding optimizations are possible. Buyer nodes
can join buyer class super nodes and because buyers are
interested in sending but not reviewing search requests,
the super node can shield them from these unnecessary
messages.

• Leaf Node Information Caching:
If leaf nodes provide static search request info (Resource
Listings and Benchmark Results) super nodes can cache
this data. This allows the super nodes to respond to simple

search requests and also discovery requests for the leaf
nodes and limit network traffic.

Like UltraPeers, such super nodes can coexist with regular
nodes who do not conform to a leaf protocol. The OCEAN
Matching System protocol was built with these considerations
to give flexibility to explore many possible network evolution
schemes.

IV. NETWORK EVOLUTION

Like similar large distributed peer to peer networks, at any
one time an OCEAN node can only know a finite number of
peer nodes. We define this as a node’s reach[5]. Our goal is
to propose a scheme that will allow an OCEAN node to learn
how to move throughout the network over time to improve the
quality of the nodes within the reach restriction. We propose
a machine learning algorithm that does the following:

1) Having each node collect statistics on its peers in order
to evaluate their effectiveness at handling requests.

2) Forwarding requests first to those peers that are most
likely to be able to handle them successfully.

3) Reducing the number of hops that messages must tra-
verse between buyers and sellers by allowing nodes
to learn about the peers of peers that are particularly
effective at handling transactions.

4) Allowing statistics to decay over time so as to bias
them towards more recent data (so as to more rapidly
accommodate changes in performance).



5) An incentive system that rewards node operators for
tuning their nodes for maximum effectiveness in the
distributed algorithm.

The adaptive peer list having these characteristics is man-
aged by a software component called the PLUM (Peer List
Update Manager). Let us now describe the algorithm.

A. Data structures

Each node maintains a local, persistent data structure called
the peer list. The peer list is simply a list of peer entries that is
maintained in a preference order (most-preferred first). Each
entry contains the name (i.e., ocean: pathname) of the peer
OCEAN node in question, and the following statistics which
are locally maintained for that peer:
• nTrials: Nominally, this counts the number of resource

requests that we (the current node) have forwarded from
buyers (including ourselves) to this particular peer. I
say ”nominally” because the decay procedure (described
later) implies that older trials may be counted less heavily.

• nSuccesses: Nominally, this counts the number of for-
warded resource requests that have actually led to a
successful sale of resources.

Other variables mentioned below are constant parameters
local to each PLUM that may be configured by the node
operator.

B. Peer rating

For each peer in the peer list, its rating is computed
according to the following formula:

rating =
nSuccesses+ successBias

nTrials+ trialBias

The intent of the rating is to predict the probability of success
(i.e., of leading to a sale) for sending a request to the given
peer. The successBias and trialBias values are constant
parameters of our own node that may be set by the node
operator, that effectively give the number of successes and
trials that the node operator thinks would be typical for a
new peer in the absence of any actual data. Note that in the
absence of any data, the predicted probability of success is
just successBias

trialBias . If successBias = 1 and trialBias = 2,
the formula nSuccesses+1

nTrials+2 is exactly the success probability
that would result from a Bayesian analysis of the data using
a Beta distribution which results from a maximum-entropy
assumption that any probability of success between 0 and
1 is a priori equally likely, and therefore that the average
probability of success is 1

2 . If we want to get some a priori
probability of success p other than 1

2 , we simply arrange
that successBias

trialBias = p. The absolute (as opposed to relative)
magnitudes of successBias and trialBias determine how
much data is needed to override our bias. For example, if
successBias = 10 and trialBias = 20, then the initial
probability of success will still be assessed at 1

2 , but it will
take 10 times as many data points, given a particular actual
frequency of successes, to achieve a given rating (say 0.9),
compared to the case where the bias values are just 1 and 2. (A

more principled way to compute successBias and trialBias,
rather than just picking them out of a hat, might be to just
use, say, some fraction of the total nSuccesses and nTrials
statistics over all our peers.)

Procedure:
1) Upon initialization after being installed, the local PLUM

has exactly 1 peer on its peer list: the pre-programmed
OCEAN node at the CAS server, and the data for this
peer is initialized to nSuccesses = nTrials = 0.

2) Periodically (every queryPeriod seconds), the PLUM
will send a query to each of the top nToQuery peers
on its peer list. This query requests that the peer insert
the current node into its peer list if it’s not already
there (with 0 nSuccesses and nTrials), and also that
the peer return back the list of its top nToReturn
peers (a parameter of the peer’s PLUM). The peers are
returned together with their nSuccesses and nTrials
values, which are multiplied by hearsayPenalty (a
local parameter, for example 0.1 to indicate that we
believe our peers’ statistics only 0.1 times as much as
our own statistics) and then added into our own statistics
for those same peers, after multiplying those by (1-
hearsayFactor, a fraction between 0 and 1), which
prevents feedback between ratings from getting out of
hand. Also, if the peer is not in our peer list yet, we first
add it, with null statistics. If the result is that the peer list
size is greater than maxNPeers, then the lowest-rated
peers (after updating the ratings) are discarded from our
peer list until only maxNPeers peers remain.

3) Also periodically (every degradePeriod seconds), we
multiply every nSuccesses and nTrials value for every
peer on our peer list by (1 - decayFraction). The
decayFraction is some small number (e.g., 0.01). Do-
ing this guarantees that (a) the values of the statis-
tics don’t grow without bound, and (b) that older
statistics are weighted less heavily (by a factor of 1-
decayFraction per degradePeriod) relative to newer
statistics. This allows the behavior of the network to
adapt more rapidly to changing circumstances.

4) Each time we receive a request for resources (either
from our own node, or forwarded from another node),
after making sure it is a new request and decrementing
and checking its hopsToLive, and adding our node
to the end of the request’s record of the nodes it has
traversed, we forward the request to all the top-rated
nToAttempt peers on our peer list (in order from
highest to lowest rating), and simultaneously increment
the nTrials datum for each of those peers.

5) If we can handle the request for resources ourselves,
we contact the buyer with the information about our
offering, and a copy of the request’s travel path, so that
the buyer may consider making a transaction directly
with us. If alsoForward = True, then we also forward
the request to our peers (in case the buyer doesn’t like
our own offer).

6) When the buyer receives an offer from a node, if



 

Hop�Ring�1�

Direct�Peers�

Hop�Ring�2�

Fig. 2. Undertow algorithm: The colored boxes represent the tree levels related to direct peers measured at each ring

rememberPathToSeller = True, it adds the last
nToRemember nodes along the travel path directly to
its peer list if not there already, and increments their
nSuccesses and nTrials values. This way, the buyer has
an improved chance of more directly reaching those
same nodes in the future.

7) After the buyer has negotiated a successful contract with
a seller, it is the buyer node’s responsibility to contact
the first node along the path that the original request
traversed (this will be the buyer node itself), to report
the successful sale. This report includes the path that the
request traversed.

8) When a node receives a report of a successful sale, it
removes itself from the front of the path in the report,
and increments the nSuccesses count of the peer that is
next in the path (re-adding it to its peer list if necessary).
If rememberPathToSeller = True, it adds the last
nToRemember nodes along the travel path directly to
its peer list if not there already, and increments their
nSuccesses and nTrials values. Then it forwards the
report to the next node in the path.

9) When the transaction is reported to the CAS in order to
request that payment be carried out, the payment request
is required to include a report of the path that the original
resource request had traversed, leading up to the sale.
Every node along this path (except buyer and seller) is
given a fraction of the finder’s fee, which is a portion
of the OCEAN transaction fee that is set aside for this
purpose. If the buyer had contacted the seller directly,
then no finder’s fee is levied.

V. IMPLEMENTATION

As we discussed above, it is critical for the network to self-
evolve and optimize the set of peers for each node. We have
implemented the following two algorithms that are limited
version of above discussed methods. The implementation is
done both on Java and .Net platforms.

Wave Algorithm: The algorithm seeks to maximize the
effectiveness of direct peers by establishing a rating for each
direct peer. This rating is directly based on the historical data
of successful searches and the number of hits.

The rating is obtained from the following formula:

Rating = NumSuccess+SuccessBias
NumTrials+TrialBias

Over time the number of successes and attempts are decayed
by a fraction to insure that results are biased towards newer
data.

The evolution procedure is as follows
• Start each direct peer out with number of successes and

number of attempts at zero.
• Each search add one to the attempts counter and each

success add one to the successes counter.
• Over Time do the following:

– Decay the number of attempts and successes by a
small fraction every few seconds to ensure more
recent data it weighted more heavily.

– Every 200 or so decays:
∗ Make a decision to remove the worst performing

direct peer.
∗ Obtain the peer list of the best performing peer.

This algorithm has the advantage of being straight-forward
and so requires little book-keeping. On the other hand, full
algorithm may produce better results at the cost of more time
and complexity.

Undertow algorithm: This is another algorithm which
seeks to maximize the effectiveness of direct peers. It measures
how well each direct node is performing and the usefulness
of the path of peers it makes available. The number of peers
available through a direct peer at a certain ring is obtained
using a hop-targeted Marco Message and then search requests
are sent to this ring to determine their effectiveness. Figure 2
shows the first two rings in a possible network. Like previous
algorithm, this method obtains possible service providers in
the process, however it is a short time history approach.

The evolution procedure is as follows:
• Measure the effectiveness of direct peers by sending a

set of search messages to each and obtain their success
ratio.

• For each hop up to the time to live:
– Send out a hop targeted Marco via each direct peer

to the current hop. Record Polo responses to obtain
the number of nodes available though this peer.

– Send out a set of hop targeted Search messages via
each direct peer to the current hop.

– If an indirect peer drastically outperforms the direct
peer, attempt to make it a direct peer and drop the



current direct peer.
This algorithm also has the advantage of being simple and

requires little bookkeeping. On the other hand, It takes time
and active work to obtain the number of direct peers for each
ring, and it also initially limits your searches to only a subset
of the reachable peers.

Our preliminary results indicate that the evolution protocols
perform better than simple matching network with no evolu-
tion. More details are can be found in [3].

VI. CONCLUSIONS

We have described a market-based infrastructure for meta
computing that can be used to buy and sell grid resources. A
self-evolving, scalable matching protocol is described in detail.
Our experiences with two evolution alogrithms are provided.

REFERENCES

[1] I. Foster and C. Kesselman, Eds., The Grid: Blueprint for a Future
Computing Infrastructure. Morgan Kaufmann Publishers, 1999.

[2] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure
toolkit,” The International Journal of Supercomputer Applications and
High Performance Computing, vol. 11, no. 2, pp. 115–128, 1997.

[3] P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. P. Frank, and
C. Chokkareddy, “Ocean: The open computation exchange and arbitration
network, a market approach to meta computing,” in Proceedings of the
Second International Symposium on Parallel and Distributed Computing,
Oct. 2003.

[4] C. R. Anurang Singla, “Ultrapeers another
step towards gnutella scalability,” http://rfc-
gnutella.sourceforge.net/Proposals/Ultrapeer/Ultrapeers.htm.

[5] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement study
of peer-to-peer file sharing systems,” in Proceedings of Multimedia
Computing and Networking 2002 (MMCN ’02), San Jose, CA, USA,
January 2002.


	Introduction
	OCEAN Architecture
	Locating Desired Peers : Design of Matching Network
	Network Scenarios
	Network Extensibility

	Network Evolution
	Data structures
	Peer rating

	Implementation
	Conclusions
	References

