
.

Abstract – With the advent of 10Gbps Ethernet
technology, industry is taking a hard look at TCP/IP
stack implementations and trying to figure out how to
scale TCP/IP processing to higher speeds with least
amount of processing power. In this paper, we focus on
the following: 1) measuring and analyzing the current
performance and architectural requirements of TCP/IP
packet processing and 2) understanding the processing
requirements for TCP/IP at 10Gbps and identifying the
challenges that need to be addressed. To accomplish this
we have measured the performance of Microsoft
Windows* 2003 Server O/S TCP/IP stack running on the
state-of-the art low power Intel® Pentium® M processor
[5] in a server configuration. Based on these
measurements and our analysis, we show that the cache
misses and associated memory stalls will be the gating
factors to achieve higher processing speeds. We show the
performance improvements achievable via reduced
memory copies and/or latency hiding techniques like
multithreading.

I. INTRODUCTION
TCP/IP over Ethernet is the most dominant packet
processing protocol in datacenters and on the
Internet. It is shown in the paper [13] that the
networking requirements of commercial server
workloads represented by the popular benchmarks
like TPC-C, TPCW and SpecWeb99 are significant
and so is the TCP/IP processing overhead on these
workloads. Hence it is important to understand the
TCP/IP processing characteristics and the
requirements of this processing as it scales to
10Gbps speeds with the least possible amount of
processing overhead. Analysis done on TCP/IP in
the past [2,4] has shown that only a small fraction of
the computing cycles are required by the actual
TCP/IP protocol processing and that the majority of
cycles are spent in dealing with the Operating
System, managing the buffers and and passing the
data back and forth between the stack and the end-
user applications. Many improvements and
optimizations have been done to speed up the
TCP/IP packet processing over the years. CPU-
intensive functions such as checksum calculation

and segmentation of large chunks of data into right-
sized packets have been offloaded to the Network
Interface Card (NIC). Interrupt coalescing by the
NIC devices to minimize the number of interrupts
sent to the CPU is also reducing the burden on
processors. In addition to these NIC features, some
OS advancements such as asynchronous I/O and
pre-posted buffers are also speeding up TCP/IP
packet processing. While these optimizations
combined with the increases in CPU processing
power are sufficient for the current 100 Mbps and
1Gbps Ethernet bandwidth levels, these may not be
sufficient to meet a sudden jump in available
bandwidth by a factor of 10 with the arrival of
10Gbps Ethernet technology.

In this paper, we focus on transmit and receive side
processing components of TCP/IP which are some
times also referred to as data or common path
processing. We have performed detailed
measurements on Intel® Pentium® M
microprocessor to understand execution time
characteristics of TCP/IP processing. Based on our
measurements, we analyze the architectural
requirements of TCP/IP processing in future
datacenter servers (expected to require around
10Gbps soon). We do not cover connection
management aspects of TCP/IP processing here but
intend to study these later using traffic generators
like GEIST [8]. For a detailed description of the
TCP/IP protocols, please refer to RFC [9].

II. CURRENT TCP/IP PERFORMANCE
In this section, we first provide an overview of the
TCP/IP performance in terms of the throughput and
CPU utilization. We then characterize TCP/IP
processing by analyzing information gathered from
the processor’s performance monitoring events. To
accomplish this, we have used NTttcp, a tool based
on a TCP/IP benchmark program called ttcp [12].

Measurement-based Analysis of TCP/IP Processing Requirements

Srihari Makineni Ravi Iyer
Communications Technology Lab

Intel Corporation
{srihari.makineni, ravishankar.iyer}@intel.com

.

TCP/IP Performance - TX & RX

0

500

1000

1500

2000

2500

3000

3500

4000

64 128 256 512 1024 1460 2048 4096 8192 16384 32768 65536

TCP Payload in Bytes

Th
ro

ug
hp

ut
 (M

b/
s)

0

20

40

60

80

100

120

CP
U

 U
til

iz
at

io
n

Tx Throughput
RX Throughput
RX CPU
TX CPU

 Figure 1. Today’s TCP/IP Processing Performance -- Throughput and CPU Utilization

This is used to test the performance of the
Microsoft Windows* TCP/IP stack. We have used
another tool called EMON for gathering
information on processor behavior when running
NTttcp. EMON collects information like number
of instructions retired, cache misses, TLB misses
and etc. from the processor. For information on
system configuration used in the tests, various
modes of TCP/IP operation and parameters we
have used for, please refer to [3].

A. Overview of TCP/IP Performance
Figure 1 shows the observed transmit and receive-
side throughput and CPU utilization over a range
of TCP/IP payload (application data) sizes. The
reason for lower receive side performance over the
transmit side for payload sizes larger than 512
bytes is due to memory copy that happens when
copying the data from NIC buffer to application
provided buffer. Also, the TCP/IP stack sometimes
ends up copying the incoming data into the socket
buffer if the application is not posting the buffers
fast enough. To eliminate the possibility of this
intermediate copy we ran NTttcp again with six
outstanding buffers (“-a 6”) and set the socket
buffer to zero and observed that the throughput for
a 32KB payload went up from 1300MB to
1400MB. For payload sizes less than 512 bytes the
receive side fares slightly better than the transmit
side because, for the smaller payload sizes the
TCP/IP stack on the transmit side coalesces these
payloads into a larger payload and hence results in
longer code path. Higher transmit side throughput

and lower CPU utilization for payload sizes larger
than 1460 bytes are due to the fact that we are
using the Large Segment Offload (LSO) [13]
option and the socket buffer is set to zero thus
disabling any buffering in the TCP/IP stack. Also,
when transmitting these larger payloads, the client
machines have started becoming the bottleneck as
one of the processors on these multi processor
machines is processing all the NIC interrupts and
hence is at 100% utilization while the others are
under utilized. This bottleneck can be eliminated
by employing more clients.

B. Architectural Characteristics
Figure 2 shows the number of instructions retired
by the processor for each payload size (termed as
path length or PL) and the CPU cycles required per
instruction (CPI) respectively. It is apparent that as
the payload size increases, the PL increases
significantly. A comparison of transmit and receive
side PLs reveal that the receive code path executes
significantly more instructions (almost 5x) at large
buffer sizes. This explains the larger throughput
numbers for transmit over receive. Higher PL when
receiving larger buffer sizes (> 1460 bytes) is due
to the fact that this large application buffer is
segmented into smaller packets (a 64 Kbytes of
application buffer generates ~44.8 TCP/IP packets
on LAN) before transmitting and hence the receive
side has to process several individual packets per
an application buffer. At small buffer sizes,
however,

.

Pathlength (insts per buffer)

0

50,000

100,000

150,000

200,000

250,000

300,000

64 12
8

25
6

51
2

10
24

14
60

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

Buffer Size

P
L

pe
r b

uf
fe

r TX PL RX PL

System-Level CPI

1

2

3

4

5

6

64 12
8

25
6

51
2

10
24

14
60

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

Buffer Size

C
P

I

TX CPI

RX CPI

(a) Path Length (b) CPI Characteristics

Figure 2. Execution Characteristics of TCP/IP Processing

TCP
Payload in
bytes

TX RX TX RX TX RX TX RX TX RX TX RX
64 4,536 3,759 843.6 768.1 1.0 3.1 9.0 6.2 5.9 9.1 39.2 17.9

128 4,305 3,892 863.0 788.3 1.6 6.5 7.2 6.3 7.2 9.6 40.9 28.2
256 4,600 4,134 918.9 844.2 3.5 13.1 10.4 6.8 9.4 11.2 48.0 46.0
512 5,088 4,607 1,026.4 947.6 4.5 25.9 8.3 7.7 15.3 14.2 62.1 82.3

1024 5,597 5,608 1,128.9 1,142.5 5.7 50.9 9.7 10.1 21.6 21.5 80.6 153.1
1460 6,713 6,473 1,359.6 1,329.6 7.7 73.0 11.7 11.0 34.2 25.8 102.1 202.3
2048 7,978 9,779 1,590.1 2,023.3 7.7 101.5 24.4 13.5 54.8 39.7 158.3 304.6
4096 8,540 21,547 1,765.7 4,515.3 9.2 219.1 25.7 43.9 56.1 109.1 179.0 791.5
8192 10,675 31,955 2,167.8 6,436.0 12.6 474.6 31.5 56.6 83.9 135.2 217.2 1,600.7

16384 14,766 56,225 3,028.8 11,754.8 20.9 1,079.5 45.5 97.0 140.7 227.7 299.7 3,330.2
32768 22,320 130,440 4,604.7 22,680.7 34.0 2,286.7 64.6 176.1 196.0 409.4 426.9 7,196.8
65536 55,597 245,148 11,172.9 51,144.1 114.0 4,758.8 96.0 331.5 296.7 751.2 958.4 14,415.3

Instruction Cache
Misses per payload

Data Cache misses
per payload

#of Instructions
per payload

of branches per
payload

Memory accesses
per payload

TLB Misses Per
payload

Table 1. Transmit & Receive-Side Processing Characteristics

the PL for transmit and receive is quite similar as
well as much lower.

Looking at the CPI numbers, the observation is that
the transmit CPI is relatively flat as compared to
the increase in payload size. The increase in
receive CPI with the buffer size is due to the fact
that receive side processing involves at least one
memory copy of the received data which causes
several cache misses. The observed dip in the
receive CPI for 2KB, 4KB and 32KB buffer sizes
is due to a reduction in the number of L1 and L2
misses for these buffer sizes. We are further
investigating the cause for lower cache misses for
these three buffer sizes.

Table 1 summarizes some additional architectural
characteristics of the TCP/IP packet processing.
From the data, we note that the number of memory
accesses per payload are significantly higher for
receive-side processing. This leads to the higher
receive-side CPI shown in Figure 2(b) and the

lower performance of the receive operation as
compared to transmit in Figure 1.

III. ANALYZING CHALLENGES IN TCP/IP
PROCESSING

In this section we analyze the requirements for
TCP/IP processing in a future datacenter. Our
previous analysis of server networking
characteristics [13] has shown that the datacenter
server applications require TCP/IP processing
close to 10Gbps in the near future. To achieve this
processing rate efficiently, we study the effect of
platform evolution (processor frequency
improvements and memory latencies
improvements) on transmit and receive
performance scaling. We then show that some
specific functions of this processing definitely need
to be sped up in order to make the TCP/IP
processing at 10Gbps a reality on the general
purpose processors. Our analysis can also shed
light on the features required for packet processing

.

engines that are being investigated by various
research projects [11].

A. Effect of Frequency Improvements

In order to understand the effect of frequency
improvements, we measured the performance of
receive and transmit-side processing on the same
platform employing the same processor at two
different frequencies (1600MHz and 600MHz).
Table 4 shows the frequency scaling of TCP/IP
packet processing. We define frequency scaling as
the ratio of the increase in performance with
respect to the increase in CPU frequency.

TCP
Payload
in Bytes

Transmit Receive

64 63% 68%
128 64% 64%
256 64% 56%
512 56% 46%

1024 52% 37%
1460 46% 33%
2048 56% 41%
4096 47% 55%

Table 2. Frequency Scaling Efficiency

It should be noted that frequency scaling
experiments illustrate the limitations posed by a
constant memory latency on performance since we
used the same platform configuration. Based on
this frequency scaling, we show the expected
increase in performance as a function of frequency
in Figure 3. The curves denoted by the suffix
(“_mscale”) denote the performance as the
frequency is increased in the X-axis. In contrast,
the curves denoted by the suffix (“_pscale”) show
the scaling achievable if the memory access speed
also scaled at the same rate as the CPU frequency.
From Figure 3(a), we find that the transmit
performance can support 10Gbps only at 4096
payload size and, furthermore, only if we achieved
a constant CPI over future platform generations.
For the receive-side, we are hardly able to achieve
5Gbps for the same case. With sub-optimal
memory latency improvements, the (realistic)
performance scenario seems far from the desired
processing rate.

B. Memory Latency Improvements

To address the issue of memory latency for
receive-side processing, we next study the
performance improvement achievable assuming
significant memory latency improvements in the
long term. Some of the technologies that support
such a potential improvement include integration
of memory controllers on to the processor die, the
use of faster processor-memory

Potential Transmit Scaling w/ Frequency Evolution

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5

Normalized Frequency
Th

ro
ug

hp
ut

 (M
bp

s)

4096_pscale
4096_mscale
1460_pscale
1460_mscale
512_pscale
512_mscale
128_pscale
128_mscale

(a) Transmit side scaling

Potential Recieve Scaling w/ Frequency Evolution

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5

Normalized Frequency

Th
ro

ug
hp

ut
 (M

bp
s)

4096_pscale
4096_mscale
1460_pscale
1460_mscale
512_pscale
512_mscale
128_pscale
128_mscale

(b) Receive side scaling

Figure 3. Performance Scaling with CPU
Frequency Evolution

Potential Receive Side Scaling w/ Memory Latency

0%

50%

100%

150%

200%

250%

128 256 512 1024 1460
Payload Size (bytes)

No
rm

al
iz

ed

Pe
rfo

rm
an

ce

memlat
memlat*0.75
memlat*0.5
memlat*.25

Figure 4. Performance Scaling with Memory

Access Time

.

interconnects (faster parallel busses and /or faster
serial link technologies). Figure 4 shows the
performance benefits achievable with reduction in
memory access latency. The TCP/IP processing
performance is shown for five different payload
sizes (128 bytes to 1460 bytes). For each payload
size, the performance is shown normalized to the
base memory latency (in today’s platform). As the
memory latency reduces from 75% to 50% and
then to 25% of what it is now (in clocks),
improvements from 5% to 100% are achievable.
The performance benefits are larger for higher
payload sizes since the time spent accessing
memory is higher in these cases (as payload size
increases, so does the amount of memory copy).

C. Potential Challenges / Solutions

As shown in the previous subsection, memory stall
time can be huge problem for receive-side
processing. Table 3 starts to analyze the problem of
memory copies by studying the percentage of
memory misses spent in copying data from one
payload size to another. As shown in the Table 3,
we find that 43% to 65% of cache misses are due
to copies. Surprisingly, we also find that the
performance of cache misses reduces as the
payload size is increased.

TX RX TX RX TX RX
64 1.0 3.1 - 2 negl 65%

128 1.6 6.5 - 4 negl 61%
256 3.5 13.1 - 8 negl 61%
512 4.5 25.9 - 16 negl 62%

1024 5.7 50.9 - 32 negl 63%
1460 7.7 73.0 - 46 negl 63%
2048 7.7 101.5 - 64 negl 63%
4096 9.2 219.1 - 128 negl 58%
8192 12.6 474.6 - 256 negl 54%

16384 20.9 1079.5 - 512 negl 47%
32768 34.0 2286.7 - 1024 negl 45%
65536 114.0 4758.8 - 2048 negl 43%

Measured Misses per
Buffer

Copy-Related Misses
(assuming src/dest
not in cache)

% of Cache Misses
related to Copies

Table 3. Analyzing Memory Copies

In order to address the memory stall time, there are
two types of approaches that need to be
investigated -- (1) reducing the number of memory
accesses through better cache management
schemes and prefetching schemes and (2) hiding
the memory latency by overlapping it with other
useful work i.e. multithreading for example. To
study the performance potential of multithreading

on TCP/IP processing performance, we measured
the performance of TCP/IP paths on Intel’s
Pentium® 4 processor with Hyper-Threading (HT)
enabled and disabled. The performance benefits of
HT are illustrated in Figure 5. As shown, we find
that HT helps significantly in overlapping
execution and hiding memory latency, resulting in
a performance benefit from ~20% to over 50%.

Benefits of HyperThreading

0

10

20

30

40

50

60

64 12
8

25
6

51
2

10
24

14
60

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

TCP Payload in Bytes

%
 B

en
ef

it

TX

RX

Figure 5. Benefits of HT Technology

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a detailed analysis of
TCP/IP transmit and receive side performance in
terms of the achieved throughput, CPU utilization
and the architectural characteristics like Cycles Per
Instruction (CPI), number of instructions executed
for a given TCP payload size (also known as Path
Length or PL) and etc. We then computed the
architectural requirements of TCP/IP processing at
10Gbps and compared these requirements with the
natural evolution of processor and memory
technologies and identified some key issues that
need to be addressed to effectively scale the
TCP/IP stacks to 10Gbps speeds.

Future work in this area is multi-fold. We are
looking into several threading technologies like
SMP, CMP and etc. as a way to hide the memory
latencies. We are also looking into various
hardware assists that help accelerate the memory
copies, and mechanisms to bring data into cache
shortly before it is needed.

ACKNOWLEDGEMENTS
We would like to express our thanks to Michael
Espig for providing us the necessary system
infrastructure to be able to performance these
measurements. We would also like to Dave
Minturn and Ramesh Illikkal for his insight into the
TCP/IP protocol stacks and other members of our
team for their helpful input on this study.

.

NOTICES
® is a trademark or registered trademark of Intel
Corporation or its subsidiaries in the United States
and other countries.
* Other names and brands may be claimed as the
property of others.

REFERENCES
[1] J. Chase et. al., “End System Optimizations for

High-Speed TCP”, IEEE Communications, Special
Issue on High-Speed TCP, June 2000.

[2] D. Clark et. al., “An analysis of TCP Processing
overhead”, IEEE Communications, June 1989.

[3] A. Earls, “TCP Offload Engines Finally Arrive”,
Storage Magazine, March 2002.

[4] A. Foong et al., “TCP Performance Analysis Re-
visited,” IEEE International Symposium on
Performance Analysis of Software and Systems,
March 2003.

[5] S. Gochman, et al., “The Intel® Pentium® M
Processor: Microarchitecture and Performance.”
Intel Technology Journal.
http://developer.intel.com/technology/itj/, May
2003.

[6] R. Huggahalli and R. Iyer, “Direct Cache Access
for Coherent Network I/O”, submitted to an
international conference, 2003.

[7] K. Kant, “TCP offload performance for front-end
servers,” to appear in Globecom, San Francisco,
2003.

[8] K. Kant, V. Tewari and R. Iyer, “GEIST – A
Generator for E-commerce and Internet Server
Traffic,” 2001 IEEE International Symposium on
Performance Analysis of Systems and Software
(ISPASS), Oct 2001

[9] J. B. Postel, “Transmission Control Protocol”, RFC
793, Information Sciences Institute, Sept. 1981.

[10] M. Rangarajan et al., “TCP Servers: Offloading
TCP/IP Processing in Internet Servers. Design,
Implementation, and Performance,” Rutgers
University, Dept of Computer Science Technical
Report, DCS-TR-481, March 2002.

[11] G. Regnier et al., “ETA: Experience with an Intel
Xeon Processor as a Packet Processing Engine,” A
Symposium on High Performance Interconnects
(HOT Interconnects), Stanford, 2003.

[12] “The TTTCP Benchmark”,
http://ftp.arl.mil/~mike/ttcp.html

[13] S. Makineni and R. Iyer, “Performance
Characterization of TCP/IP Processing in
Commercial Server Workloads, to appear in the 6th
IEEE Workshop on Workload Characterization
(WWC-6), Austin, Oct 2003.

