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Abstract – With the advent of 10Gbps Ethernet 
technology, industry is taking a hard look at TCP/IP 
stack implementations and trying to figure out how to 
scale TCP/IP processing to higher speeds with least 
amount of processing power. In this paper, we focus on 
the following: 1) measuring and analyzing the current 
performance and architectural requirements of TCP/IP 
packet processing and 2) understanding the processing 
requirements for TCP/IP at 10Gbps and identifying the 
challenges that need to be addressed. To accomplish this 
we have measured the performance of Microsoft 
Windows* 2003 Server O/S TCP/IP stack running on the 
state-of-the art low power Intel® Pentium® M processor 
[5] in a server configuration. Based on these 
measurements and our analysis, we show that the cache 
misses and associated memory stalls will be the gating 
factors to achieve higher processing speeds. We show the 
performance improvements achievable via reduced 
memory copies and/or latency  hiding techniques like 
multithreading. 

I. INTRODUCTION  
TCP/IP over Ethernet is the most dominant packet 
processing protocol in datacenters and on the 
Internet. It is shown in the paper [13] that the 
networking requirements of commercial server 
workloads represented by the popular benchmarks 
like TPC-C, TPCW and SpecWeb99 are significant 
and so is the TCP/IP processing overhead on these 
workloads. Hence it is important to understand the 
TCP/IP processing characteristics and the 
requirements of this processing as it scales to 
10Gbps speeds with the least possible amount of 
processing overhead. Analysis done on TCP/IP in 
the past [2,4] has shown that only a small fraction of 
the computing cycles are required by the actual 
TCP/IP protocol processing and that the majority of 
cycles are spent in dealing with the Operating 
System, managing the buffers and and passing the 
data back and forth between the stack and the end-
user applications.  Many improvements and 
optimizations have been done to speed up the 
TCP/IP packet processing over the years.  CPU-
intensive functions such as checksum calculation 

and segmentation of large chunks of data into right-
sized packets have been offloaded to the Network 
Interface Card (NIC).  Interrupt coalescing by the 
NIC devices to minimize the number of interrupts 
sent to the CPU is also reducing the burden on 
processors.  In addition to these NIC features, some 
OS advancements such as asynchronous I/O and 
pre-posted buffers are also speeding up TCP/IP 
packet processing. While these optimizations 
combined with the increases in CPU processing 
power are sufficient for the current 100 Mbps and 
1Gbps Ethernet bandwidth levels, these may not be 
sufficient to meet a sudden jump in available 
bandwidth by a factor of 10 with the arrival of 
10Gbps Ethernet technology.   

In this paper, we focus on transmit and receive side 
processing components of TCP/IP which are some 
times also referred to as data or common path 
processing. We have performed detailed 
measurements on Intel® Pentium® M 
microprocessor to understand execution time 
characteristics of TCP/IP processing. Based on our 
measurements, we analyze the architectural 
requirements of TCP/IP processing in future 
datacenter servers (expected to require around 
10Gbps soon). We do not cover connection 
management aspects of TCP/IP processing here but 
intend to study these later using traffic generators 
like GEIST [8]. For a detailed description of the 
TCP/IP protocols, please refer to RFC [9]. 

II. CURRENT TCP/IP PERFORMANCE 
In this section, we first provide an overview of the 
TCP/IP performance in terms of the throughput and 
CPU utilization. We then characterize TCP/IP 
processing by analyzing information gathered from 
the processor’s performance monitoring events. To 
accomplish this, we have used NTttcp, a tool based 
on a TCP/IP benchmark program called ttcp [12]. 
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 Figure 1.  Today’s TCP/IP Processing Performance -- Throughput and CPU Utilization 
 

This is used to test the performance of the 
Microsoft Windows* TCP/IP stack. We have used 
another tool called EMON for gathering 
information on processor behavior when running 
NTttcp. EMON collects information like number 
of instructions retired, cache misses, TLB misses 
and etc. from the processor. For information on 
system configuration used in the tests, various 
modes of TCP/IP operation and parameters we 
have used for, please refer to [3]. 
 

A. Overview of TCP/IP Performance 
Figure 1 shows the observed transmit and receive-
side throughput and CPU utilization over a range 
of TCP/IP payload (application data) sizes. The 
reason for lower receive side performance over the 
transmit side for payload sizes larger than 512 
bytes is due to memory copy that happens when 
copying the data from NIC buffer to application 
provided buffer. Also, the TCP/IP stack sometimes 
ends up copying the incoming data into the socket 
buffer if the application is not posting the buffers 
fast enough. To eliminate the possibility of this 
intermediate copy we ran NTttcp again with six 
outstanding buffers (“-a 6”) and set the socket 
buffer to zero and observed that the throughput for 
a 32KB payload went up from 1300MB to 
1400MB. For payload sizes less than 512 bytes the 
receive side fares slightly better than the transmit 
side because, for the smaller payload sizes the 
TCP/IP stack on the transmit side coalesces these 
payloads into a larger payload and hence results in 
longer code path. Higher transmit side throughput 

and lower CPU utilization for payload sizes larger 
than 1460 bytes are due to the fact that we are 
using the Large Segment Offload (LSO) [13] 
option and the socket buffer is set to zero thus 
disabling any buffering in the TCP/IP stack. Also, 
when transmitting these larger payloads, the client 
machines have started becoming the bottleneck as 
one of the processors on these multi processor 
machines is processing all the NIC interrupts and 
hence is at 100% utilization while the others are 
under utilized. This bottleneck can be eliminated 
by employing more clients.  
 

B. Architectural Characteristics 
Figure 2 shows the number of instructions retired 
by the processor for each payload size (termed as 
path length or PL) and the CPU cycles required per 
instruction (CPI) respectively. It is apparent that as 
the payload size increases, the PL increases 
significantly. A comparison of transmit and receive 
side PLs reveal that the receive code path executes 
significantly more instructions (almost 5x) at large 
buffer sizes. This explains the larger throughput 
numbers for transmit over receive. Higher PL when 
receiving larger buffer sizes (> 1460 bytes) is due 
to the fact that this large application buffer is 
segmented into smaller packets (a 64 Kbytes of 
application buffer generates ~44.8 TCP/IP packets 
on LAN) before transmitting and hence the receive 
side has to process several individual packets per 
an application buffer. At small buffer sizes, 
however,
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(a) Path Length                   (b) CPI Characteristics 

Figure 2.  Execution Characteristics of TCP/IP Processing 
 

TCP 
Payload  in 
bytes

TX RX TX RX TX RX TX RX TX RX TX RX
64 4,536 3,759 843.6 768.1 1.0 3.1 9.0 6.2 5.9 9.1 39.2 17.9

128 4,305 3,892 863.0 788.3 1.6 6.5 7.2 6.3 7.2 9.6 40.9 28.2
256 4,600 4,134 918.9 844.2 3.5 13.1 10.4 6.8 9.4 11.2 48.0 46.0
512 5,088 4,607 1,026.4 947.6 4.5 25.9 8.3 7.7 15.3 14.2 62.1 82.3

1024 5,597 5,608 1,128.9 1,142.5 5.7 50.9 9.7 10.1 21.6 21.5 80.6 153.1
1460 6,713 6,473 1,359.6 1,329.6 7.7 73.0 11.7 11.0 34.2 25.8 102.1 202.3
2048 7,978 9,779 1,590.1 2,023.3 7.7 101.5 24.4 13.5 54.8 39.7 158.3 304.6
4096 8,540 21,547 1,765.7 4,515.3 9.2 219.1 25.7 43.9 56.1 109.1 179.0 791.5
8192 10,675 31,955 2,167.8 6,436.0 12.6 474.6 31.5 56.6 83.9 135.2 217.2 1,600.7

16384 14,766 56,225 3,028.8 11,754.8 20.9 1,079.5 45.5 97.0 140.7 227.7 299.7 3,330.2
32768 22,320 130,440 4,604.7 22,680.7 34.0 2,286.7 64.6 176.1 196.0 409.4 426.9 7,196.8
65536 55,597 245,148 11,172.9 51,144.1 114.0 4,758.8 96.0 331.5 296.7 751.2 958.4 14,415.3

Instruction Cache 
Misses per payload

Data Cache misses 
per payload

#of Instructions 
per payload

# of branches per 
payload

Memory accesses 
per payload

TLB Misses Per 
payload

 
Table 1. Transmit & Receive-Side Processing Characteristics 

 
the PL for transmit and receive is quite similar as 
well as much lower.  
 
Looking at the CPI numbers, the observation is that 
the transmit CPI is relatively flat as compared to 
the increase in payload size. The increase in 
receive CPI with the buffer size is due to the fact 
that receive side processing involves at least one 
memory copy of the received data which causes 
several cache misses.  The observed dip in the 
receive CPI for 2KB, 4KB and 32KB buffer sizes 
is due to a reduction in the number of L1 and L2 
misses for these buffer sizes. We are further 
investigating the cause for lower cache misses for 
these three buffer sizes.  
 
Table 1 summarizes some additional architectural 
characteristics of the TCP/IP packet processing. 
From the data, we note that the number of memory 
accesses per payload are significantly higher for 
receive-side processing. This leads to the higher 
receive-side CPI shown in Figure 2(b) and the  
 

 
lower performance of the receive operation as 
compared to transmit in Figure 1. 

III. ANALYZING CHALLENGES IN TCP/IP 
PROCESSING 

 
In this section we analyze the requirements for 
TCP/IP processing in a future datacenter. Our 
previous analysis of server networking 
characteristics [13] has shown that the datacenter 
server applications require TCP/IP processing 
close to 10Gbps in the near future. To achieve this 
processing rate efficiently, we study the effect of 
platform evolution (processor frequency 
improvements and memory latencies 
improvements) on transmit and receive 
performance scaling. We then show that some 
specific functions of this processing definitely need 
to be sped up in order to make the TCP/IP 
processing at 10Gbps a reality on the general 
purpose processors. Our analysis can also shed 
light on the features required for packet processing 



. 
 

   

engines that are being investigated by various 
research projects [11]. 
 

A. Effect of Frequency Improvements 
 
In order to understand the effect of frequency 
improvements, we measured the performance of 
receive and transmit-side processing on the same 
platform employing the same processor at two 
different frequencies (1600MHz and 600MHz). 
Table 4 shows the frequency scaling of TCP/IP 
packet processing. We define frequency scaling as 
the ratio of the increase in performance with 
respect to the increase in CPU frequency. 
 

TCP 
Payload 
in Bytes 

Transmit Receive 

64 63% 68% 
128 64% 64% 
256 64% 56% 
512 56% 46% 

1024 52% 37% 
1460 46% 33% 
2048 56% 41% 
4096 47% 55% 

 
Table 2. Frequency Scaling Efficiency 

 
It should be noted that frequency scaling 
experiments illustrate the limitations posed by a 
constant memory latency on performance since we 
used the same platform configuration. Based on 
this frequency scaling, we show the expected 
increase in performance as a function of frequency 
in Figure 3. The curves denoted by the suffix 
(“_mscale”) denote the performance as the 
frequency is increased in the X-axis. In contrast, 
the curves denoted by the suffix (“_pscale”) show 
the scaling achievable if the memory access speed 
also scaled at the same rate as the CPU frequency. 
From Figure 3(a), we find that the transmit 
performance can support 10Gbps only at 4096 
payload size and, furthermore, only if we achieved 
a constant CPI over future platform generations. 
For the receive-side, we are hardly able to achieve 
5Gbps for the same case. With sub-optimal 
memory latency improvements, the (realistic) 
performance scenario seems far from the desired 
processing rate. 
 

B. Memory Latency Improvements 
 
To address the issue of memory latency for 
receive-side processing, we next study the 
performance improvement achievable assuming 
significant memory latency improvements in the 
long term. Some of the technologies that support 
such a potential improvement include integration 
of memory controllers on to the processor die, the 
use of faster processor-memory  
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(a) Transmit side scaling 
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(b) Receive side scaling 

Figure 3.  Performance Scaling with CPU 
Frequency Evolution 
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Figure 4.  Performance Scaling with Memory 
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interconnects (faster parallel busses and /or faster 
serial link technologies). Figure 4 shows the 
performance benefits achievable with reduction in 
memory access latency. The TCP/IP processing 
performance is shown for five different payload 
sizes (128 bytes to 1460 bytes). For each payload 
size, the performance is shown normalized to the 
base memory latency (in today’s platform). As the 
memory latency reduces from 75% to 50% and 
then to 25% of what it is now (in clocks), 
improvements from 5% to 100% are achievable. 
The performance benefits are larger for higher 
payload sizes since the time spent accessing 
memory is higher in these cases (as payload size 
increases, so does the amount of memory copy). 
 

C. Potential Challenges / Solutions 
 
As shown in the previous subsection, memory stall 
time can be huge problem for receive-side 
processing. Table 3 starts to analyze the problem of 
memory copies by studying the percentage of 
memory misses spent in copying data from one 
payload size to another. As shown in the Table 3, 
we find that 43% to 65% of cache misses are due 
to copies. Surprisingly, we also find that the 
performance of cache misses reduces as the 
payload size is increased. 
 

TX RX TX RX TX RX
64 1.0 3.1  - 2 negl 65%

128 1.6 6.5  - 4 negl 61%
256 3.5 13.1  - 8 negl 61%
512 4.5 25.9  - 16 negl 62%

1024 5.7 50.9  - 32 negl 63%
1460 7.7 73.0  - 46 negl 63%
2048 7.7 101.5  - 64 negl 63%
4096 9.2 219.1  - 128 negl 58%
8192 12.6 474.6  - 256 negl 54%

16384 20.9 1079.5  - 512 negl 47%
32768 34.0 2286.7  - 1024 negl 45%
65536 114.0 4758.8  - 2048 negl 43%

Measured Misses per 
Buffer

Copy-Related Misses 
(assuming src/dest 
not in cache)

% of Cache Misses 
related to Copies

 
Table 3.  Analyzing Memory Copies 

 
In order to address the memory stall time, there are 
two types of approaches that need to be 
investigated -- (1) reducing the number of memory 
accesses through better cache management 
schemes and prefetching schemes and (2) hiding 
the memory latency by overlapping it with other 
useful work i.e. multithreading for example. To 
study the performance potential of multithreading 

on TCP/IP processing performance, we measured 
the performance of TCP/IP paths on Intel’s 
Pentium® 4 processor with Hyper-Threading (HT) 
enabled and disabled. The performance benefits of 
HT are illustrated in Figure 5.  As shown, we find 
that HT helps significantly in overlapping 
execution and hiding memory latency, resulting in 
a performance benefit from ~20% to over 50%. 
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Figure 5.  Benefits of HT Technology 

IV. CONCLUSIONS AND FUTURE WORK 
 
In this paper, we presented a detailed analysis of 
TCP/IP transmit and receive side performance in 
terms of the achieved throughput, CPU utilization 
and the architectural characteristics like Cycles Per 
Instruction (CPI), number of instructions executed 
for a given TCP payload size (also known as Path 
Length or PL) and etc. We then computed the 
architectural requirements of TCP/IP processing at 
10Gbps and compared these requirements with the 
natural evolution of processor and memory 
technologies and identified some key issues that 
need to be addressed to effectively scale the 
TCP/IP stacks to 10Gbps speeds.  
 
Future work in this area is multi-fold. We are 
looking into several threading technologies like 
SMP, CMP and etc. as a way to hide the memory 
latencies. We are also looking into various 
hardware assists that help accelerate the memory 
copies, and mechanisms to bring data into cache 
shortly before it is needed. 
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