
 1

Abstract� This paper proposes an idea to reduce branch

penalty in a pipelined architecture by making novel use of two
instruction pre-fetch queues, primary and auxiliary. When
there is no branch instruction, both the queues together act as a
single queue, referred to as an alternate mode of operation.
Whenever a branch instruction is present in the current
instruction mix, there is a switch over to the branch mode of
operation in which the primary queue fetches from the address
returned by the predictor while the auxiliary queue fetches from
the other path until the branch address is resolved. Hence the
next instruction (irrespective of whether the branch is taken or
not) is always available. The idea has been implemented using
simplescalar toolset 3.0 and tested on SPECINT2000
benchmarks, and a 25-55% improvement in IPC has been
observed. A comparison of our idea with other architectures
with two instruction fetch queues is also presented.

Index Terms�Instruction fetch queues, Instructions per
cycle, simplescalar simulator, both path pre-fetching.

I. INTRODUCTION

oday, pipelined processors are designed to exploit
Instruction Level Parallelism in the program. Instruction

misses in the fetch stage badly affect the performance of such
microprocessors by introducing large delay cycles. Pre-
fetching of instructions is one way of minimizing delays. This
paper presents a pre-fetching technique wherein there is an
additional instruction fetch queue apart from the normal fetch
queue. The aim is to increase the fetch bandwidth and also to
facilitate both-path pre-fetching when branches are
encountered. The queue from which the dispatch stage
consumes instructions at any point of time is labeled as the
primary queue. The other one is called the auxiliary queue.
Both the primary and the auxiliary queues are identical and
operate in parallel. They have their own read ports and can
fetch instructions simultaneously.

II. RELATED WORK

In the IBM 360/91 architecture [2], there was a separate
branch target instruction queue in its design. When the
processor decoded an instruction and detected a branch, it
fetched the first four instructions of the branch target path

and placed them into the branch target queue.
Simultaneously, the processor determined the outcome of the
branch. Depending on the outcome, the processor fetched
from either inline instruction or branch target queue.

The Pentium [2] employs two instruction queues, namely,

alternate inline instruction queue and a branch target buffer.
Note, the second queue is used to store branch target
addresses and hence is completely different in functionality
from the other queue. The processor updates the history
information in the branch target buffer. As the processor
decodes instructions, it searches the buffer to search if there is
a corresponding entry for that branch instruction. When there
is a match, the processor determines to see if the branch
should be taken. If so, it uses the target address previously
stored in the branch target buffer to begin fetching and
decoding instructions from the target path. The processor uses
the inline instruction queue not being used, which begins to
prefetch. If the branch is mispredicted, the processor flushes
the instruction queue and the instruction prefetching starts
over.

The IBM 370/165 [3][6] employs a branching strategy that

fetches along two paths, the inline path and the target path.
Two buffers are maintained, the main instruction buffer
(MIB) and the auxiliary instruction buffer (AIB). When the
effective address of the target instruction stream is known at
stage n, the target stream is fetched into the AIB. Both
streams are processed until the outcome is known.

The general organization of the rest of the paper is as

follows. Our idea on instruction pre-fetching is discussed in
section III, simulation details on the simplescalar toolset 3.0
are given in section IV, comparison with other architectures
is outlined in section V and conclusion is presented in section
VI.

III. OUR IDEA

Our technique was designed to integrate into the pipeline
of a processor with support for speculation. The pipeline
stages used for the purpose of discussion are fetch,
dispatch, issue, execute, writeback and commit. The
outcome of a branch is known in the writeback stage.

Fetch bottleneck and Branch penalty reduction
using 2 instruction pre-fetch queues

 Guru Prasadh V. Venkataramani, Hemanth Kumar Manoharan, Ranjani Parthasarathi
vvguruprasadh@yahoo.co.in, hemanth@cs.annauniv.edu, rp@cs.annauniv.edu

T

 2

A. Branch Tables
A branch table is a small buffer, with around 8 entries, in

which each entry contains the prediction direction for a
branch, its taken and not-taken addresses. These tables keep
track of branches encountered in the primary and auxiliary
queues. While the primary queue branch table may have
multiple entries, the auxiliary queue branch table, logically,
has provision for just one entry. This is because, there is no
provision for recursive both-path prefetching and hence there
is no need remember more than one branch at any point of
time. The idea becomes clearer on examining the technique
presented here.

B. Instruction Pre-fetching
There are two modes of operation viz. the alternate mode and
the branch mode. These modes are described in the following
paragraphs.

i. Alternate Mode
 The functionality of the queues varies with the current
instruction mix. There are two modes of operation namely
the branch mode and the alternate mode. The system, by
default, starts off in alternate mode and remains in the
alternate mode as long as the instruction mix consists of only
Arithmetic and Logic Unit (ALU) instructions and load/store
instructions. In the alternate mode, instructions 1 to N are
fetched by the primary queue. Instructions N+1 to 2N are
fetched by the auxiliary queue. As the first N instructions in
the primary queue are consumed by the dispatch stage,
instructions from 2N+1 onwards will be fetched by the
primary queue. In short, when the first instruction leaves the
primary queue, the process of fetching the 2N+1th instruction
would have been initiated. Thus, we get a pre-fetch lookahead
of 2N instructions in the alternate mode.

If a branch instruction appears in the primary queue when
we are in the alternate mode, there is a switch over to the
branch mode and the branch predictor is used to predict the
target address. The next instruction fetched by the primary
queue is the instruction at the address returned by the branch
predictor. The auxiliary queue starts fetching in the other
path associated with that branch. The term �other path� refers
to the address, which contradicts the decision of the branch
predictor.

If a branch instruction appears in the auxiliary queue while
in the alternate mode, the auxiliary queue simply stops pre-
fetching and waits till it becomes the primary queue.
Meanwhile, it puts an entry into the auxiliary queue branch
table.

 Whenever there is a queue switch, the auxiliary queue
branch table is consulted to check if there is any branch to be
serviced; if yes, there is a switch over to branch mode for that
branch.

ii. Branch Mode

Now when a branch instruction goes to the writeback stage
and if it is correctly predicted, the instructions brought into
the auxiliary queue are flushed, as they serve no purpose. But,
since these instructions are in a different queue with a
separate read port, this will not degrade the performance of
the existing pipeline architecture.

If on the other hand, the branch is wrongly predicted, the

auxiliary queue contains useful instructions or at least the
process of fetching useful instructions would have already
begun. Now the primary queue is flushed and a simple switch
of queues will serve the purpose. Here the latency associated
with the branch penalty will either not be incurred at all or
the latency will be lesser.

In either case (branch being correctly predicted or

incorrectly predicted), there is a switch back to alternate
mode after the branch goes to completion because the branch
mode of operation is with respect to a particular branch.

The complexity arises when branches appear on the
speculated instruction path, where the primary queue has
more than one branch instruction. In this case, if speculative
execution proceeds, �recursive both path pre-fetching� will
necessitate a new auxiliary queue for every branch in the
speculated path. It is for this reason that we restrict the level
of nesting to one. So while remaining in the branch mode for
the original branch, we simply make an entry (for every
branch instruction encountered in the primary queue) into a
branch table and proceed. When the original branch runs to
completion and is correctly predicted, the branch table is
consulted if any branch remains to be serviced; if yes, there is
a switch over to the branch mode for that branch and the
process proceeds as explained before. In case the branch runs
to completion and is wrongly predicted, the branch table is
flushed, as the branches in the speculated path are
meaningless.

If a branch instruction appears in the auxiliary queue when

in branch mode, the fetch operation in the auxiliary queue is
stalled and the auxiliary queue waits to become the primary
queue. This is done because speculation is not supported in
the auxiliary queue.

 3

IV. SIMULATION DETAILS

The simplescalar simulator 3.0 was used to implement our

idea in the pipeline of a superscalar processor with extensive
support for speculation. The simulator was then run to gather
statistics like number of branches mispredicted, number of
branch penalties saved, number of cycles for which the
auxiliary queue read port is used.

From the statistics gathered, the percentage of mis-

predictions recovered without penalty and the percentage of
utilization of the auxiliary read port has been calculated. The
results obtained on running the SPECINT2000 benchmarks
are shown in Fig. 1, Fig. 2 and Fig. 3 namely IPC comparison
graph, penalty reduction percentage graph and auxiliary port
utilization graph.

From Fig.3, it can be seen that the auxiliary port utilization

is between 80-95%, which justifies the introduction of the
new hardware port added. The percentage of mispredictions
recovered without penalty varies between 40-80%. All this
leads to an overall improvement in Instructions Per Cycle
(IPC) by 25-55%.

0

1

2

3

IPC

gcc gzip vortex

IPC Comparison chart

original proposed method

Figure 1

 Gcc Gzip Vortex
Original 1.0103 2.2674 0.8682
proposed
method

1.3427 2.8639 1.355

0
20
40
60
80

100

percent
reduction

gcc gzip vortex

Penalty Reduction percent

Figure 2

 Gcc Gzip Vortex
proposed
method

50.86 83.98 43.3

0
20
40
60
80

100

utilizatin
percent

gcc gzip vortex

Auxilliary port utilization

Figure 3

 Gcc Gzip Vortex
Proposed
method

79.79 99.8 95.26

V. COMPARISON WITH OTHER ARCHITECTURES

In our idea, when branch instructions are not present in the
current instruction mix, both the primary and the auxiliary
queues together act as a single queue, that is, after consuming
instructions 1 to N in the primary queue, the dispatch stage
starts consuming instructions from N+1 to 2N from the other
queue (which was previously the auxiliary queue and now has
become the primary queue).

Thus, the main difference between our approach and those

implemented in other architectures is that in other
approaches, the auxiliary queue is utilized only when there
are branches in the instruction queue whereas we make use of
the auxiliary queue all the time.

 4

The main advantage of our approach is that it merges
seamlessly with the speculated mode of execution. The
primary queue can continue in the speculated mode of
execution and when the earliest speculated branch fails due to
misprediction, the dispatch stage can shift over to the
auxiliary queue. Hence, the existing speculated pipeline need
not be modified much. This design hence addresses the power
considerations arising out of the additional hardware needed
for the new idea.

In contrast, the secondary queues in the IBM 370/165 and

IBM 360/91 fetch only from the branch target i.e. branch
taken address. If the branch were speculated to be taken, then
both the queues would start fetching redundantly from the
target address. This would not happen in our case.

VI. CONCLUSION

In this paper, we have presented a technique that would
improve the execution time by reducing branch penalty. An
analysis of the results after simulating the idea shows good
promise. Although this technique requires an additional read
port, high utilization of it can be taken as a justification for its
presence. Its ability to merge seamlessly with today's
speculated pipelined architectures is a major point in its
favor.

REFERENCES
[1] Jim Pierce, Trevor Mudge G. O. Young, �Wrong path instruction

prefetching�, Department of Electrical Engineering and Computer Science,
The University of Michigan, Ann Arbor.

[2] Micheal K. Milligan, Harvey G. Cragon, �Processor implementations
using queues�, University of Texas at Austin

[3] G. Alaghband, �Key elements of a computing system and their
relationships�, Parallel computation and architectures

[4] John L Hennessy, David A Patterson, �Computer Architecture A
Quantitative Approach�, Second Edition, Morgan Kaufmann Publishers,
1995

[5] SimpleScalar toolset http://www.simplescalar.org
[6] Eager execution �Mark Smotherman

http://www.cs.clemson.edu/~mark/eager.html
[7] Harvey Cragon, �Branch Strategy taxonomy and performance models�,

Los Alamitos, CA, IEEE Computer Society Press, 1992
[8] I. Flores, "Lookahead Control in the IBM System 370 Model 165," IEEE

Computer, November 1974

Guru Prasadh V. Venkataramani is currently doing B.E. computer science
and engineering at College of Engineering, Anna University, Chennai, India. His
fields of interest include computer architecture and compilers.

Hemanth Kumar Manoharan is currently doing B.E. computer science and
engineering at College of Engineering, Anna University, Chennai, India. His
fields of interest include computer architecture and embedded systems especially
on aircrafts.

Ranjani Parthasarathi is currently assistant professor of computer science and
engineering at the School of Computer Science and Engineering, Anna
university, Chennai. She received her Ph.D. degree from the Indian Institute of
Technology, Madras. Her fields of interest include computer architecture and
reconfigurable computing.

