Exploring the reliability of embedded rings in hypercubes

Harpreet Kaur Marwah(mail_harpreet@yahoo.com),

 Animesh Pathak(animesh_pathak@ieee.org)

Anil K Tripathi (anilkt@bhu.ac.in,anilamkt@rediffmail.com). *

Institute of Technology, Banaras Hindu University

Varansi, India

High performance computing often employs multiple processing nodes working synchronously to achieve the desired goal. These processing nodes may be connected in various network topologies, for example, rings, stars, meshes, hypercubes, etc. Of these topologies hypercubes are the most versatile because all others including hypercubes themselves can be embedded within hypercubes. This article explores the reliability issues arising due to the embedding of rings within hypercubes.

However, as in the case of all systems employing multiple nodes, reliability is a big issue. Many people have discussed the various facets of this problem [1] involving the embedding of architectures of various sizes in hypercubes. The problem tackled in this article is the calculation of the reliability of a system consisting of an N-Dimensional hypercube, which is considered to be working when k or more nodes are working and connected in a ring.

The number of nodes in an N-Dimensional hypercube is 2N. Finding the reliability of a k or more membered ring in such a topology is found to be of exponential complexity and thus this problem comes in the NP class. We explore a smaller problem of finding a ring comprising exactly k members in a hypercube of dimension N. The reliability can then be computed by considering the situation when the other 2N – k nodes do not have a working k -membered ring within them.

There are various strategies in finding out the k-membered rings in a hypercube of dimension N.

1. Brute Force Approach: First generate all the possible arrays of k nodes and find out the unique rings among them. This method, although simple and straightforward, will have a prohibitive cost.

2. Backtracking / Branch & Bound : Apply the validity techniques while selecting the rings themselves, so that the effort of sifting out the unique and valid rings from the generated rings will be done away with. Although this method will do away with lots of extra cases generated in the previous method, the large size of the state space tree will make the program too tedious to code.

3. The Proposed Method: We have divided the solution of this problem into two stages. In the first stage, we will be selecting all sequences of k nodes and will simultaneously check for valid rings amongst them. The second stage will consist of finding the occurrence of duplicate rings in this set. In this way, we seek to reduce the size of the state space tree considerably, thus making the algorithm simpler than the second method, as well as less costly than the first one.

Our algorithm relies on the use of a different notation to represent rings within hypercubes. Each member of the N-dimensional hypercube can be named uniquely using an N-bit representation, in which adjacent nodes differ by one bit only, as is clear from the figure below. [2]

A transform t, represented by an integer j(≤ N), denotes the movement from node ‘a’ to an adjacent node ‘b’ with their node names differing in the jth bit, bit 1 being the LSB,

e.g. in a 4-D hypercube, the transform 4 applied to the node [1110] gives the node [0110] and vice versa.

A transform list T stands for the list [t1;t2;t3;…;tk] of transforms applied to a node in the order t1 , t2 , t3 and so on,

e.g. The transform list [1;2;3;2] applied to the node [0000] in the previous hypercube will give us the path [0000] – [0001] – [0011] – [0111] – [0101].

In this article we will be using the above nomenclature for representing rings within hypercubes. A ring will be represented by a starting node N0 and a transform list T like (N0,T).

A ring (N0,T) will be called legal if the set of transforms T, when applied to N0, brings it back to N0 with no nodes being repeated on the way.

In light of the above statement, the following facts emerge regarding the nomenclature of legal rings. A ring (N0,T) will be called legal if and only if

a) T is of even length. Since the appearance of the transform j in T denotes the movement in the jth dimension/direction away from the starting node, it has to be compensated by the same transform j appearing a second time. Thus each dimension should occur an even number of times making the length of the entire string even.

b) No consecutive transforms in T should be identical. Since two identical transforms applied consecutively to a node brings us back to the same node, no number should appear consecutively in T. Furthermore, since a ring is circular, the last and the first transforms should also be different. e.g. the ring ([0000] , [1;2;3;2;3;1]) is not valid because the first and the last transforms are both ‘1’.

c) Another way nodes can be repeated in (N0,T), apart from the consecutive occurrence of a transform, is through the occurrence of a smaller ring in it. Thus, we have to make sure that it does not contain a smaller legal sub-ring, e.g. the ring ([0000], [1;2;3;2;3;4;1;4]) is not legal because it has a smaller legal ring ([0001],[2;3;2;3]).

 Due to the circular nature of rings, the nomenclature discussed above is not unique, i.e., many representations exist for the same ring. These repetitions can be removed after the generation of all possible legal representations of rings by observing the following facts:

a) If (N0,T) is a ring, (N0,rev(T)) is also the same legal ring where rev(T)denotes the reverse of the list T.

b) If (N0,T) is a ring then (car(T)•N0,rev(cat(car(L),rev(cdr(T))))) is the same ring, where,

car(L) = The first element of the list L,

cdr(L) = The list arising after removing the first element from L,

cat (l,L) = The list obtained by appending the element l to the front of the list L, and

rev(L) = The list arising after reversing the list L.

e.g. In the 4-D hypercube, consider the ring

([0000],[1;2;3;1;2;3]),

i.e.,

 [0000] – [0001] – [0011] – [0111] – [0110] – [0100] –[0000].

If we apply (rev(cat(car(T),rev(cdr(T))))) to T (= [1;2;3;1;2;3]), we get a rotated form of T, i.e. [2;3;1;2;3;1].

 Further, car(T)• [0000] or 1•[0000] gives the node [0001].

Evidently, the ring ([0001], [2;3;1;2;3;1])

or [0001] – [0011] – [0111] – [0110] – [0100] –[0000] – [0001]

is the same as the ring ([0000],[1;2;3;1;2;3]).

The algorithm emerging out of our work regarding this nomenclature and the corresponding constraining rules is as follows:

For finding all ‘2k’ member rings in an N-Dimensional hypercube (2k because the number is even)

1) Generate a k-membered transform list with no consecutive transforms being the same. This can be done by selecting one of the N transforms and then selecting the next one while making sure that it is not the same as the present one. The number of ways of doing this is clearly N*(N-1)​​​​​​​​(k-1). This part can be done by brute force.

2) Make the second ‘k’ member transform list keeping the following points in mind.

a) Each ‘non-cancelled’ transform or in other words the transform occurring an odd number of times in the first half must have a mention in the second half and all the other transforms should occur in pairs.

b) No consecutive transforms should be the same

c) t k+1 (t k and t 2k (t1, and

d) The resulting ring should not have any valid sub-ring in it.

Point ‘2’ above can utilize advanced techniques like backtracking and branch-and-bound.

Now we have all the transforms that result in legal rings. They can then be applied to all the 2N nodes, giving us all the legal 2k-membered rings in the N-dimensional hypercube.

Looking for repetitions

The last step involved is removing repetitions and getting a set of unique rings out of the ones generated. This will involve the following steps:

1. Let U be the set of unique rings, initially empty.

2. Let G be the set of all valid generated rings.

3. Remove a ring (N0,T) from G and place it in U.

4. Generate all repetitions of (N0,T) using the uniqueness rules discussed earlier. For every repetition generated, remove it from G.

5. After all repetitions of (N0,T) are removed from G, repeat steps 3 – 4 until G becomes empty.

The above stage completes the search for all unique valid k-membered rings within the N-dimensional hypercube

In this article, we have presented a hybrid method to tackle the generation of rings within hypercubes. There is a possibility of improvement in the repetition finding algorithm and one can look for efficient algorithms for generating the second halves of the 2k member rings.

The final paper will consist of the required notation, abbreviations and definitions referred to in the work, apart from the formal text and additional references as and their uses will appear in the text.

References:

[1] Jong Kim et al., “Reliability Evaluation of Hypercube Multicomputers”, IEEE Transactions on Reliability, Vol. 38, No. 1, 1989 April, pp 121 – 130.

[2] Kai Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw-Hill ,Inc.
[0000]

[0001]

[0010]

[0011]

[0101]

[0100]

[0110]

[0111]

[1000]

[1001]

[1101]

[1100]

[1010]

[1110]

[1101]

[1111]

4-Dimensional Hypercube

3

1

2

2

4

