
On Impact of Ordering Memory Accesses in
Dynamically Scheduled Parallel Applications

Rakhi Hemani*, Abhishek Swaroop
Computer Science and Information Technology

Jaypee Institute of Information Technology
Noida, India

rakhi.hemani@jiit.ac.in, abhishek.swaroop@jiit.ac.in

Abstract— Scheduling of parallel tasks is a
complex problem as many computational
resources are available. The scheduling decision
is usually guided by cost models that typically
take into account computation time and
memory access times. These models do not try
to schedule tasks on the basis of the actual
memory accesses made by the tasks. It has been
proved that sequential memory accesses are
much more beneficial than random memory
accesses. Thus it may be concluded that the
scheduling decision should take into account
the order of memory accesses made by different
parallel tasks.

In this work we demonstrate the impact of
ordering blocked memory accesses in a
dynamically scheduled parallel application (7
point Stencil). We observe a performance
degradation of 30%-50% incases of random
memory accesses as compared to sequential
memory access.

Keywords- Memory Accesses, Multi-core, Task
scheduling;

I. INTRODUCTION

Multi-core architectures have emerged as the
technology for getting more performance [1] today.
To benefit from this underlying architecture, user
applications must execute in parallel and engage all
available resources at all instants of time. Usually
parallelizing of an application involves three
distinct issues: - identification of parallelism,
* Student Author

expression of parallelism and matching of
parallelism to the available platform. In this paper
we focus on the last aspect - “matching of
parallelism to the available platform”.

An application may be parallelized by splitting
it into many smaller tasks and scheduling each task
on a computational unit. This scheduling may be
done statically or dynamically. Static scheduling of
applications usually involves an in-depth analysis
of application and can be tailor made to specific set
of resources. Dynamic scheduling is more flexible
and, in our opinion, it is easier to apply on any type
of platform. Such type of scheduling usually
involves predicting time for completion of various
tasks. This is usually achieved by help of
parameterized cost models for each task. These
parameterized cost models take into consideration
resource and task based parameters. It then predicts
time taken for executing a task on each available
resource. The appropriate resource may then be
selected. Typical cost models take into
consideration time for computations and memory
accesses.

It may also be noted that with almost static
clock frequencies, memory accesses are no longer
neglected. Apart from the time taken to fetch
memory, the order of memory accesses also
impacts memory performance. In [2] authors have
reported that due to pre-fetching memory accesses
are faster if sequential memory is accessed.

In this work, we focus on the impact of
ordering memory accesses in a dynamically
scheduled parallel application, by comparing
performance of random and sequential accesses to
blocks of memory. Our experiments show that if
all other factors are constant the time taken for

random accesses is always more than the time
taken for sequential accesses. The degradation
observed was in the range of 30%-50% in our
experiments.

The remainder of this paper is organized as
follows: in Section II of this paper we describe the
scheduling platforms available today, in particular
the StarPU platform. In section III of the paper we
describe the stencil application and its subsequent
scheduling on StarPU platform. Our experimental
platform, methodology and results are discussed
next. Finally in the last section we conclude our
work and discuss the future direction of our work.

II. SCHEDULING PARALLEL APPLICATIONS

[3] and [4] have considered scheduling of parallel
tasks on heterogeneous parallel platforms. The
first paper presents a highly optimized static
library for heterogeneous architectures, and the
second focuses on dynamic scheduling of parallel
tasks integrated with data management. The
second approach is found to be competitive and
yields performance similar to the first. It is
obvious that static scheduling of all applications is
difficult, as it involves in-depth analysis of
application and can be tailor made to specific set
of resources.
Run time systems like StarPU rely on cost models
for scheduling parallel tasks. StarPU gives the
facility of using many scheduling policies and cost
models. The cost models take into consideration
time taken for computation and memory accesses
(dmda). Developing good cost models is a separate
subject of research. For example [5] have recently
developed cost models for multi-core machines.
Their model includes impact of memory
contention. By the proper use of such models it is
possible to decide the computational resource on
which each of the parallel tasks is scheduled. It is
also possible to calculate the time taken to transfer
memory when distributed memory resources are
available.

However, none of the cost models discussed
above, consider the actual memory accesses made
each task. For example, consider the situation
when multiple tasks having the same computation
cost and accessing same amount of memory have
to be scheduled on a shared memory, multiple core
processors. In this scenario, the current cost models

will not differentiate among the different tasks, as
all will have the have the same cost.

In [2] it has been reported that when blocks of
memory are accessed after some skip length, the
memory performance reduces as the block length is
decreased. This is because in sequential accesses
pre-fetching plays a major role. This work is
reported when all memory accesses were made by
a single processor.

In this paper, we consider the scheduling of
tasks that have same number of computations and
access same amount of memory. However, each
task accesses different memory. We want to find
the impact of ordering such tasks on basis of
memory accesses that they make. For example, all
tasks accesses M amount of memory and comprise
of C number of computations. Now if number of
such tasks exceeds the number of computational
resources present, then our objective is to find the
impact of scheduling tasks which access sequential
memory and tasks which access random memory.

In the next section, a basic 7 point stencil kernel
and its adaptation to StarPU platform is described.

III. APPLICATION DESIGN

Stencil kernel is used for solving partial
differential equations. We consider a 7 point stencil
application which operates on two distinct, three
dimensional matrices a and b of size NX * NY *
NZ. We consider updating the first matrix a based
on the values of the second matrix b. The
formulation is:

for (i = 1; i < NX - 1 ; i++)
 for (j = 1; j < NY - 1 ; j++)
 for (k = 1 ; k < NZ – 1 ; k++)
{
a(i , j , k) = b(i , j , k)
 + b(i-1 , j , k) + b(i+1 , j , k)
 + b(i , j-1 , k) + b(i , j+1 , k)
 + b(i , j , k-1) + b(i , j , k+1)
}
Stencil updates are considered memory

intensive operations and many previous researches
for example [2] have optimized stencil operation.

 For adapting this application to the StarPU
platform tasks are defined by splitting the

computations. The splitting is done by dividing the
a matrix along the x axes (i.e. the iterations of the
outermost for loop), into blocks of size
BLOCK_SIZE. This divides the matrix into many
slices each with dimension BLOCK_SIZE * NY *
NZ. The computation of each such slice is a task
and is submitted to StarPU platform. Note that this
division requires appropriate division of B matrix
also.

Insertion of tasks is done in sequential or
random order on basis of a Slice_Order vector. For
sequential accesses slices are inserted in their
natural order, i.e. slices that access sequential
memory are inserted sequentially. For random
accesses, first Slice_Order vector is randomly
assigned values in the range
(0 – ((NX / BLOCK_SIZE) – 1)), then tasks are
inserted in this random order.

IV. EXPERIMENTS

A. Platform
All experiments were carried on i3-540 processor,
with 3.06 GHz clock rate. This processor has dual
core architecture with 2 hyper-threads, 32 KB L1
cache, 256 KB L2 cache and 4096 KB L3 cache.
The system shares L3 cache among all cores,
where as L1 and L2 caches are private. It has 1752
MB of RAM and 150 GB of hard disk and runs
Fedora 13 Operating System.
StarPU 0.9 was installed with hwloc library
support. This helps StarPU to schedule all tasks on
the different cores. No task was scheduled on
hyper-threads.

B. Methodology
For our experiments we considered a matrix of
size 2050 * 514 * 514. BLOCK_SIZE was varied
from 4 to 512. Tasks were submitted to the StarPU
platform in random as well as sequential order.
Each experiment was repeated 5 times. To ensure
minimum interference with other processes the
experiments were run using run-level 2 of the
Operating System.

C. Results
The results obtained are shown in tabular form in
Table 1 and 2. The same results are plotted in
Figure 1. Both average and minimum time taken
for random and sequential task insertions are
described. It is observed that time taken by
random strategy is always more than time taken

for sequential strategy. From the experiments we
notice that performance degradation is somewhat
inversely proportional to block size. This is
expected, because as block size decreases, the
number of blocks increase, and more memory is
fetched in random order.

Table 1 Average Performance Degradation

Block
Size

Random
Avg

Sequential
Avg

% Degradation
Avg (Random
on Sequential)

4 137.42 95.02 30.85
8 125.90 74.67 40.69

16 117.90 60.65 48.56
32 125.72 60.43 51.94
64 108.39 53.42 50.72

128 87.72 56.84 35.21
256 86.85 51.90 40.24
512 83.32 49.95 40.05

Table 2 Minimum Performance Degradation

Block
Size

Random
Min

Sequential
Min

% Degradation
Min (Random
on Sequential)

4 100.03 65.96 34.06
8 105.77 53.62 49.31

16 105.89 51.56 51.31
32 107.93 55.28 48.78
64 89.43 39.93 55.35

128 59.65 47.38 20.57
256 67.96 41.64 38.73
512 60.81 48.66 19.97

V. CONCLUSION AND FUTURE WORK

The experiments show that ordering of memory
accesses impacts performance of an application.
We plan to extend our study to more applications
for example graph applications as they have
random memory accesses. We also plan to extend
run-time frameworks like StarPU to include
memory access information while scheduling
tasks.

0

20

40

60

80

100

120

140

160

4 8 16 32 64 128 256 512
Block Size

Ti
m

e
(s

ec
on

ds
)

Random Avg
Sequential Avg
Random Min
Sequential Min

Figure 1 Impact of ordering memory accesses on
Stencil Application

REFERENCES

[1] Asanovic, Krste, et al., “The Landscape of
Parallel Computing Research: A View from
Berkeley ”, Technical Report No. UCB/EECS-
2006-183, December 18, 2006.

[2] Datta K. etal, “Optimization and Performance
Modelling of Stencil Computations on Modern
Microprocessors”, SIAM Review, Number 51,
Issue 1, Pages 129-159, 2009.

[3] Tomov S., Dongarra J., and Baboulin M.,
“Towards dense linear algebra for hybrid GPU
accelerated manycore systems”, Parallel
Computing, Volume 36, Issue 5-6, June 2010.

[4] Augonnet C. etal, “StarPU: a unified platform
for task scheduling on heterogeneous
multicore architectures”, Concurrency and
Computation: Practice and Experience,
Special Issue: Euro-Par 2009, Volume 23,
Issue 2, February 2011.

[5] Wu X. and Taylor V., “Performance Modeling
of Hybrid MPI/OpenMP Scientific
Applications on Large-scale Multicore Cluster
Systems” in the 14th IEEE International
Conference on Computational Science and
Engineering (CSE-2011), Dalian, China,
August 24-26, 2011

