
Adaptive Probing: A Monitoring-Based Probing
Approach for Fault Localization in Networks

Akshay Kumar * , R. K. Ghosh , Maitreya Natu
*Student author

Indian Institute of Technology, Kanpur, India
Tata Research Development and Design Centre, Pune, India

Email: akshayk@iitk.ac.in; rkg@iitk.ac.in; maitreya.natu@tcs.com

Abstract The past research in fault
localization in distributed data centers has
used either monitoring or probing techniques
in isolation. In this paper, we argue that
effective fault localization solutions can be
built by exploiting the information captured
by both the techniques. Based on this concept,
we propose an adaptive probing solution for
fault localization where information from
monitoring agents is used to adapt probing
policies such that probe traffic is reduced,
localization accuracy is increased, and
localization time is minimized. We
demonstrate the proof-of-concept through
experimental results.
Keywords-Fault Localization, Probing,
Monitoring.

I. INTRODUCTION

scale and complexity; and are being used for
serving various performance critical
applications. For smooth operations of these
systems, there is an increasing demand to
monitor the system performance and localize
any component failure in minimal time.

The past approaches for monitoring can be
classified into two categories: (a) component-
level passive monitoring, and (b) end-to-end
probing. Passive monitoring techniques [2,5]
involve deployment of monitors at each
component to collect system metrics (e.g. CPU
utilization, memory usage etc.) periodically.
Probing-based techniques [3, 4] send test
transactions (e.g. ping, trace routes) through the
network to infer network health. Passive
monitoring-based techniques provide fine-
grained metrics, but fail to provide end-to-end
view of the system. Probing-based techniques,
on the other hand, can provide end-to-end
metrics but introduce additional traffic in the
network and fail to provide fine-grained
analysis.

Most of the fault localization solutions,
proposed in the past, are based on using either

probing or monitoring in isolation. We argue
that effective fault localization can be designed
by using the information captured by both
probing and monitoring agents. In this paper, we
present the design of a monitoring-based
adaptive probing solution for fault localization.

The ability to measure and analyze end-to-end
metrics has encouraged the development of
various probing-based solutions for fault
localization in networks. However, the past
probing-based solutions suffer from the
limitation of lack of node-level view. All
probing-decisions are based only on the result of
probes sent in the past and do not use the
information captured by the passive monitors.
The probes thus selected fail to balance the
inherent tradeoff between probe traffic and
localization time. In this paper, we argue that
effective solutions can be designed by using
monitoring agents to adapt the probing policies.
The adaptive probing-based solutions thus built
for fault localization can (a) provide accurate
fault localization, (b) minimize fault localization
time, and (c) minimize the additional probe
traffic created in the network.

The adaptive-probing solutions proposed in
the past [3,4] use the following 2-step approach -
1. A small set of probes are sent periodically to
detect the presence of failure in the network. The
probes only detect the presence of a failure but
do not localize the failed nodes. The selection of
probes and their probing frequency should be
such that (a) probe traffic is minimized and (b)
detection time is minimized.
2. On detection of a failure, additional probes are
sent to localize the exact failure. The selection of
probes should be such that (a) fault localization
accuracy is high, and (b) localization-time is
minimized.

The above steps of detection and localization
can be improved using the information collected
by monitors. The metrics collected by the
monitoring agent at each node can be used to
estimate potential failure or change in steady-
state of a node. Monitoring information can then

be used to adapt the probing policies for
detection and localization of failure in order to
improve probe-traffic, localization time, and
localization accuracy.

In this paper, we present solutions for fault
localization centered around the idea outlined
above. Initially, the monitoring data is used to
get insights into the performance properties of
nodes and paths. Then the probes and the probe
frequencies are determined on the basis of these
monitoring insights. The selection of probes thus
helps to keep both probe traffic and detection
time low. Probe selection is further refined and
optimized on the basis of additional insights
gained from the results of past probes and
monitoring agents. With the above approach,
localization time is kept low and the accuracy of
fault localization becomes high.

We discuss each of these problems in detail in
the following sections. In particular, our focus is
on examining the opportunities and the
challenges in solving these problems. We
present some initial ideas on our ongoing
research in building a desired solution in lines
stated above. We also present initial
experimental results to demonstrate the proof-of-
concept.

II. RELATED WORK
Initially, for fault localization, pre-planned

probing technique was used, in which pre-
compiled probes were sent to localize the cause
of any fault. For reducing the management
traffic, active probing was introduced which
divided the work into two sub-parts, viz., fault
detection and fault localization reducing the
number of probes. Both the pre-planned and
active probing approaches are described in [4].
Fault detection was done by selecting minimum
number of probes which can cover all nodes in a
greedy manner and Fault localization was done
by using min, max or binary search proposed in
[3].

In the literature, fault localization was done in
various ways through monitoring. In [5], the
problem of finding root cause of failure is solved
by building a dependency graph in the network.
There has been very little work in combining
probing and monitoring [2]. An efficient
approach to dynamically adjust the monitoring
level of monitors on the basis of probe results
was mentioned in [1]. Considering the state of
work in the area, our approach assumes
significance as it attempts to balance the two

techniques in solving the core problem of fault
localization.

III. PROBLEM FORMULATION
Figure 1 presents the basic building blocks of

the proposed approach.

A. Health-check engine
Monitors are deployed on the nodes and the

monitored metrics are fed to the health-check
engine to estimate the health of each node. The
health of a node is an indicator of a potential
node failure or a change in the steady state of the
node. Several design decisions need to be made
at the health-check engine such as: (a) given a
large number of metrics, how to choose the best
representative set of metrics. (b) how to compute
change in the steady state of a node? (c) how to
compute abnormality of a node behavior? We
discuss details of health-check engine in Section
IV.

Note that node-level analysis only provides a
silo-based understanding of the system.
Reporting of failed nodes based purely on
monitoring information can lead to many false
positives and false negatives. The node level
analysis needs to be supported by probing to
measure end-to-end effect of the unexpected
behavior of a node.

Figure 1: Proposed architecture

B. Failure detection
Probes are sent from probe stations. Probe

stations are special nodes instrumented to send
probes and receive probe results. Probes should
be selected carefully because sending a large
number of probes will create a huge burden on
the already existing application traffic. The
probes for failure detection are selected only to
detect the presence of failure in the network and
not to localize the cause of failure. The failure
detection module uses the node health
information to select probes and probe frequency
for failure detection such that (a) any failure in
the network can be detected, (b) probe traffic is
minimized, and (c) failure detection time is

minimized. We discuss details of failure
detection in Section V.

C. Fault localization
The fault localization component selects

additional probes to be sent into the network to
further analyze the nodes on the failed probe
paths. Fault localization probes are invoked only
in the event of presence of failure and should be
designed to quickly and accurately localize the
fault. The fault localization module uses the node
health information to select probes such that (a)
fault localization is accurate, and (b) localization
time is minimized. We discuss details of fault
localization in Section VI.

IV. COMPUTING HEALTH MEASURE OF A
NODE.

A. Select the representative metrics
Monitoring agents typically collect a wide

variety of system metrics including CPU and
memory utilizations, disk IO, page faults, thread
pool, heap size, network bytes in/out, etc. It is
critical to identify a representative set of metrics
in order to analyse a node health. While expert-
knowledge-based selection of metrics cannot be
completely avoided, some statistical filters can
be applied to prune the redundant, derived, and
dependent metrics. We propose to use invariant
detection techniques based on Principal
Component Analysis (PCA) and Classification
and Regression Trees (CARTs) to identify the
representative metrics.

B. Compute change in steady state of metrics
After identifying the representative metrics,

the next step is to model the normal behavior of a
metric. In many scenarios, standard compliance
thresholds are prescribed for many system
metrics such as CPU utilization, page faults, etc.
In the absence of such benchmarks, we propose a
simple statistical approach to compute the normal
behavior of a metric based on historical data
captured under the normal system conditions.
Different techniques have been proposed in the
past for representing normal behavior of a metric
time-series, but for simplicity, we compute the
mean MN(x) and standard deviation SDN(x) of a
metric x on the historical data and update it
periodically.

The metric x is then evaluated over periodic
intervals to check for any deviation from normal
behavior. We propose to evaluate the
abnormality based on change in both mean and
standard deviation. Consider Mt(x) and SDt(x) as
the mean and standard deviation of the metric x

in time-interval t. The node abnormality can then
be computed as follows:

Mt(x)-MN(x)|)/MN(x) +
(|SDt(x)-SDN(x)|)/ SDN(x)

,where and are constants (such that + =1) to
assign different weights to change observed in
mean and standard deviation.

C. Compute node abnormality
A metric for node abnormality can be

computed as a function of abnormality of its
representative system metrics. A conservative
approach for calculating node abnormality is to
compute the maximum or 90th percentile of the
abnormality values computed for all
representative measures. In more informed
scenarios, a weighted average of the abnormality
values can be used to compute the node
abnormality. The weights can be chosen based on
available knowledge of metric importance. For
instance, for a node intended to perform CPU
intensive tasks the abnormality of CPU metrics
will be given higher weight over the IO metrics.

V. FAILURE DETECTION
The traditional approach of failure detection

has been to select a small set of probes that
covers all network nodes and send these probes
at a high frequency to quickly detect presence of
any node failure. In this section, we demonstrate
how the node abnormality information computed
above can be used to intelligently select the
probes and probing frequencies for failure
detection, thereby resulting in less probe traffic
and quicker detection.

A. Desired probing frequency for node and
probe
The desired probing frequency for a probe can

be recommended based on the abnormality
measure of its nodes. Thus, we propose to
compute path abnormality as a function of
abnormalities of its nodes. Various functions can
be used to compute path abnormality. A
conservative approach is to choose maximum of
the node abnormality values, while an aggressive
approach is to choose minimum. For the
following discussion, we consider path
abnormality as an average of abnormality values
of the nodes on the path. Thus:
Abnormality(P)=Avg n {Nodes(P)}(Abnormality(n))

The path abnormality can then be used to
recommend probing frequency for a probe. Node
showing high abnormality should be probed at
higher frequency to quickly detect potential end-
to-end performance problem. Node showing
consistent normal behaviour should be probed at

a lesser frequency to reduce unnecessary probe
traffic. Similarly, a probe with high path
abnormality is likely to pass though unhealthy
nodes demanding higher probing frequency. A
probe with low path abnormality passes through
the nodes showing expected normal behaviour
and hence can be probed at a lower frequency.

Note that a very aggressive approach of large
decrease in probing frequency can harm in
scenarios where a node failure causes end-to-end
problems but the monitoring agents fail to

large decrease in probing frequency of the
perceived healthy paths can save on probe traffic
but can cost increase in detection time. Hence,
frequency should be set appropriately to balance
such trade-off. For simplicity, we propose to use
a rule-book to map range of node and path
abnormality to recommended probing frequency.
This rule-book can be constructed based on
network properties and expert knowledge. As
part of our on-going research, we are working on
techniques to automate the rule-book
construction and adapting the rule-book to
changing network conditions.

Algorithm 1: Fault Detection Probe-set Selection

B. Probe Selection
The probes for failure detection should be

selected on the following criteria:
(a) Coverage: This criterion indicates the number
of nodes covered by a probe. The number of
failure detection probes can be decreased by
selecting probes that cover large number of nodes
that are not covered by already selected probes.
(b) Probe frequency match: This criterion
indicates the match between the recommended
and the desired probing frequency at each node
on the probe path. Consider a scenario where
many nodes on a probe path P demand a lower
probing frequency than the probing frequency of
the probe path P. In such cases, the probe P will
result in the cost of sending additional probe
traffic on these nodes. Also, when many nodes
demand a probing frequency higher than the
frequency of the probe path, it will result in

collection of less data leading to potential
delayed detection of failure of these nodes. Thus,
the probes passing through nodes with similar
probe frequency demands should be preferred to
maximize the probe frequency match. We
propose to compute following two metrics to
evaluate a probe: (i) Additional probing cost
(APC): to address scenarios where path probing
frequency is greater than required node probing
frequency. (ii) Monitoring loss (ML): to address
scenarios where path probing frequency is
smaller than required node probing frequency.
Algorithm 1 computes ProbeScore for each
probe based on the coverage, additional probing
cost, and monitoring loss by the equation:
ProbeScore

set such that the selected probe
passes through nodes with similar desired
probing frequencies. We initialize these constants
as -1,-2 and 3. However, they can be set to other
values based on requirements. The algorithm
selects probe with Max ProbeScore to group
nodes with similar desired probing frequencies
together till all the nodes in the network are
covered.
In order to capture changing network conditions,
the probe selection process should be performed
at periodic intervals or in the event of increase in
unhealthy node count.

Algorithm 2: Fault Localization Probe-set Selection

VI. FAULT LOCALIZATION
Once a failure is detected by failure detection

probes, additional probes are sent to localize the
failed node(s). In this section, we demonstrate
how probe selection for fault localization can be
improved by using the monitoring information.
We demonstrate this improvement using the
example of Min and Max Search proposed as
part of the adaptive probing solution in [3]. We
refer to the nodes on the path of the failed failure-
detection probes as the suspected nodes.
(a) Min-Search: Min Search selects a probe for
each suspected node which passes through the
least number of other suspected nodes. Here, a
failed probe quickly localizes the failed node, but
a successful probe does not significantly prune
the suspected node set.

(b) Max-Search: Max Search selects probes that
cover maximum number of suspected nodes. In
this search, a failed probe needs additional
probes to further localize the root-cause, but a
successful probe significantly prunes the set of
suspected nodes.

We propose to use node health information to
exploit the strengths of both Min and Max
search. Probes for healthy and unhealthy nodes
can be selected based on Max-Search and Min-
Search policy respectively. Thus, the probes
selected using Max-Search policy are likely to
succeed and hence will effectively prune the
search space with minimal probes. The probes
selected using Min-Search policy are likely to
fail and will quickly localize the failed node(s).
Algorithm 2 presents the proposed algorithm.

Figure 2: Latency time-series sent by (a) traditional
adaptive probing (1601 probes), (b) proposed adaptive
probing (776 probes)

Figure 3: Probes sent by different probing approaches. (a)
total probes,(b) Probes for failure detection, (c) Probes for
fault localization.

VII. EXPERIMENTS AND RESULTS
We simulated network topologies traffic

through CSIM and evaluated the probing
approaches to localize node failures. A node
failure is modeled as a gradual increase in node
processing latencies resulting in high end-to-end
latencies of the ongoing traffic. At each node, we
collected resource utilization metrics. Pings were
sent as probes and latencies were calculated. We
compared proposed approach with pre-planned
probing [4] and adaptive probing [3].

We first demonstrate the case of a single
probe path where traditional adaptive probing
sends probes at a constant frequency and the
monitoring-based adaptive probing adapts the
probing frequency. The monitoring-based
adaptive probing approach is able to capture all
the states of normal and unexpected behavior
even after sending significantly lower traffic
(Figure 2).

We next performed experiments on a 20-node
topology to localize failure of 2 nodes. All three
algorithms accurately localized the failed nodes.
We computed the number of probes sent by pre-
planned, traditional-adaptive, and proposed
probing algorithms. Figure 3(a) shows that the
number of probes computed by the proposed
approach (453) is significantly less than pre-
planned probing (6490) and traditional-adaptive
probing (1188). Figure 3(b) and 3(c) compute the
number of probes sent by traditional-adaptive
probing and the proposed approach for failure
detection and fault localization. It can be seen
that the proposed approach provides significant
savings on the probe traffic.

VIII. CONCLUSION AND FUTURE WORK
We presented an adaptive probing solution for

fault localization in a network by adapting the
probing policies using the information provided
by monitoring agents. We presented initial ideas
to infer information captured by monitoring
agents, and used this information to select probes
and their frequency for failure detection and fault
localization. We presented the proof-of-concept
through simulations.

While the proposed solution demands
deployment of both monitoring and probing
agents, we argue that an adaptive approach can
significantly decrease the probing and monitoring
demands compared to cases of using either of
them in isolation. As part of our going research,
we are also working on intelligently selecting
minimal nodes to deploy monitoring agents. We
are also working on several other aspects of this
solution such as (a) different ways to compute
node health and path health, (b) automating the
rule-book to map path-health to probe frequency,
(c) extensive experimental evaluation of
proposed solution in real set-ups and simulations.

REFERENCES
[1] D. Jeswani, R.K. Ghosh and M.

Monitoring: A Hybrid Approach for Monitoring
HIPC 2010.

[2] S.-H. Han, M.-S. Kim, H. Ju, and J. Hong. The
architecture of NG-MON: A passive network
monitoring system for high-speed IP networks.
In DSOM 2002, Montreal, Canada, 2002.

[3] M. Natu, A. Sethi, Application of Adaptive
Probing for Fault Diagnosis in Computer
Networks , In NOMS, Salvador, Brazil, 2008.

[4] I. Rish, M. Brodie, S. Ma, N. Odintsova, A.
Beygelzimer, G. Grabarnik, and K. Hernandez.
Adaptive diagnosis in distributed systems. IEEE
Transactions on Neural Networks, 2005.

[5] P. Bahl , R. Chandra , A. Greenberg , S. Kandula
, D. A. Maltz and M. Zhang "Towards highly
reliable enterprise network services via inference
of multi-level dependencies", Proc. ACM
SIGCOMM, 2007.

