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Abstract The past research in fault 
localization in distributed data centers has 
used either monitoring or probing techniques 
in isolation. In this paper, we argue that 
effective fault localization solutions can be 
built by exploiting the information captured 
by both the techniques. Based on this concept, 
we propose an adaptive probing solution for 
fault localization where information from 
monitoring agents is used to adapt probing 
policies such that probe traffic is reduced, 
localization accuracy is increased, and 
localization time is minimized. We 
demonstrate the proof-of-concept through 
experimental results. 
Keywords-Fault Localization, Probing, 
Monitoring. 

I. INTRODUCTION 

scale and complexity; and are being used for 
serving various performance critical 
applications. For smooth operations of these 
systems, there is an increasing demand to 
monitor the system performance and localize 
any component failure in minimal time. 

The past approaches for monitoring can be 
classified into two categories: (a) component-
level passive monitoring, and (b) end-to-end 
probing. Passive monitoring techniques [2,5] 
involve deployment of monitors at each 
component to collect system metrics (e.g. CPU 
utilization, memory usage etc.) periodically. 
Probing-based techniques [3, 4] send test 
transactions (e.g. ping, trace routes) through the 
network to infer network health. Passive 
monitoring-based techniques provide fine-
grained metrics, but fail to provide end-to-end 
view of the system. Probing-based techniques, 
on the other hand, can provide end-to-end 
metrics but introduce additional traffic in the 
network and fail to provide fine-grained 
analysis.  

Most of the fault localization solutions, 
proposed in the past, are based on using either 

probing or monitoring in isolation. We argue 
that effective fault localization can be designed 
by using the information captured by both 
probing and monitoring agents. In this paper, we 
present the design of a monitoring-based 
adaptive probing solution for fault localization. 

The ability to measure and analyze end-to-end 
metrics has encouraged the development of 
various probing-based solutions for fault 
localization in networks. However, the past 
probing-based solutions suffer from the 
limitation of lack of node-level view. All 
probing-decisions are based only on the result of 
probes sent in the past and do not use the 
information captured by the passive monitors. 
The probes thus selected fail to balance the 
inherent tradeoff between probe traffic and 
localization time. In this paper, we argue that 
effective solutions can be designed by using 
monitoring agents to adapt the probing policies. 
The adaptive probing-based solutions thus built 
for fault localization can (a) provide accurate 
fault localization, (b) minimize fault localization 
time, and (c) minimize the additional probe 
traffic created in the network. 

The adaptive-probing solutions proposed in 
the past [3,4] use the following 2-step approach -  
1. A small set of probes are sent periodically to 
detect the presence of failure in the network. The 
probes only detect the presence of a failure but 
do not localize the failed nodes. The selection of 
probes and their probing frequency should be 
such that (a) probe traffic is minimized and (b) 
detection time is minimized. 
2. On detection of a failure, additional probes are 
sent to localize the exact failure. The selection of 
probes should be such that (a) fault localization 
accuracy is high, and (b) localization-time is 
minimized. 

The above steps of detection and localization 
can be improved using the information collected 
by monitors. The metrics collected by the 
monitoring agent at each node can be used to 
estimate potential failure or change in steady-
state of a node. Monitoring information can then 



be used to adapt the probing policies for 
detection and localization of failure in order to 
improve probe-traffic, localization time, and 
localization accuracy. 

In this paper, we present solutions for fault 
localization centered around the idea outlined 
above. Initially, the monitoring data is used to 
get insights into the performance properties of 
nodes and paths. Then the probes and the probe 
frequencies are determined on the basis of these 
monitoring insights. The selection of probes thus 
helps to keep both probe traffic and detection 
time low. Probe selection is further refined and 
optimized on the basis of additional insights 
gained from the results of past probes and 
monitoring agents. With the above approach, 
localization time is kept low and the accuracy of 
fault localization becomes high.  

We discuss each of these problems in detail in 
the following sections. In particular, our focus is 
on examining the opportunities and the 
challenges in solving these problems. We 
present some initial ideas on our ongoing 
research in building a desired solution in lines 
stated above. We also present initial 
experimental results to demonstrate the proof-of- 
concept. 

II. RELATED WORK 
Initially, for fault localization, pre-planned 

probing technique was used, in which pre-
compiled probes were sent to localize the cause 
of any fault. For reducing the management 
traffic, active probing was introduced which 
divided the work into two sub-parts, viz., fault 
detection and fault localization reducing the 
number of probes. Both the pre-planned and 
active probing approaches are described in [4]. 
Fault detection was done by selecting minimum 
number of probes which can cover all nodes in a 
greedy manner and Fault localization was done 
by using min, max or binary search proposed in 
[3]. 

In the literature, fault localization was done in 
various ways through monitoring. In [5], the 
problem of finding root cause of failure is solved 
by building a dependency graph in the network. 
There has been very little work in combining 
probing and monitoring [2]. An efficient 
approach to dynamically adjust the monitoring 
level of monitors on the basis of probe results 
was mentioned in [1]. Considering the state of 
work in the area, our approach assumes 
significance as it attempts to balance the two 

techniques in solving the core problem of fault 
localization. 

III. PROBLEM FORMULATION 
Figure 1 presents the basic building blocks of 

the proposed approach. 

A. Health-check engine 
Monitors are deployed on the nodes and the 

monitored metrics are fed to the health-check 
engine to estimate the health of each node. The 
health of a node is an indicator of a potential 
node failure or a change in the steady state of the 
node. Several design decisions need to be made 
at the health-check engine such as: (a) given a 
large number of metrics, how to choose the best 
representative set of metrics. (b) how to compute 
change in the steady state of a node? (c) how to 
compute abnormality of a node behavior?  We 
discuss details of health-check engine in Section 
IV.  

Note that node-level analysis only provides a 
silo-based understanding of the system. 
Reporting of failed nodes based purely on 
monitoring information can lead to many false 
positives and false negatives. The node level 
analysis needs to be supported by probing to 
measure end-to-end effect of the unexpected 
behavior of a node. 

 
Figure 1: Proposed architecture 

B. Failure detection 
Probes are sent from probe stations. Probe 

stations are special nodes instrumented to send 
probes and receive probe results. Probes should 
be selected carefully because sending a large 
number of probes will create a huge burden on 
the already existing application traffic. The 
probes for failure detection are selected only to 
detect the presence of failure in the network and 
not to localize the cause of failure. The failure 
detection module uses the node health 
information to select probes and probe frequency 
for failure detection such that (a) any failure in 
the network can be detected, (b) probe traffic is 
minimized, and (c) failure detection time is 



minimized. We discuss details of failure 
detection in Section V. 

C. Fault localization 
The fault localization component selects 

additional probes to be sent into the network to 
further analyze the nodes on the failed probe 
paths. Fault localization probes are invoked only 
in the event of presence of failure and should be 
designed to quickly and accurately localize the 
fault. The fault localization module uses the node 
health information to select probes such that (a) 
fault localization is accurate, and (b) localization 
time is minimized. We discuss details of fault 
localization in Section VI. 

IV. COMPUTING HEALTH MEASURE OF A 
NODE. 

A. Select the representative metrics 
Monitoring agents typically collect a wide 

variety of system metrics including CPU and 
memory utilizations, disk IO, page faults, thread 
pool, heap size, network bytes in/out, etc. It is 
critical to identify a representative set of metrics 
in order to analyse a node health. While expert-
knowledge-based selection of metrics cannot be 
completely avoided, some statistical filters can 
be applied to prune the redundant, derived, and 
dependent metrics. We propose to use invariant 
detection techniques based on Principal 
Component Analysis (PCA) and Classification 
and Regression Trees (CARTs) to identify the 
representative metrics.  

B. Compute change in steady state of metrics 
After identifying the representative metrics, 

the next step is to model the normal behavior of a 
metric. In many scenarios, standard compliance 
thresholds are prescribed for many system 
metrics such as CPU utilization, page faults, etc. 
In the absence of such benchmarks, we propose a 
simple statistical approach to compute the normal 
behavior of a metric based on historical data 
captured under the normal system conditions. 
Different techniques have been proposed in the 
past for representing normal behavior of a metric 
time-series, but for simplicity, we compute the 
mean MN(x) and standard deviation SDN(x) of a 
metric x on the historical data and update it 
periodically. 

The metric x is then evaluated over periodic 
intervals to check for any deviation from normal 
behavior. We propose to evaluate the 
abnormality based on change in both mean and 
standard deviation. Consider Mt(x) and SDt(x) as 
the mean and standard deviation of the metric x 

in time-interval t. The node abnormality can then 
be computed as follows: 

Mt(x)-MN(x)|)/MN(x) + 
(|SDt(x)-SDN(x)|)/ SDN(x)   

,where  and  are constants (such that + =1) to 
assign different weights to change observed in 
mean and standard deviation. 

C. Compute node abnormality  
A metric for node abnormality can be 

computed as a function of abnormality of its 
representative system metrics. A conservative 
approach for calculating node abnormality is to 
compute the maximum or 90th percentile of the 
abnormality values computed for all 
representative measures. In more informed 
scenarios, a weighted average of the abnormality 
values can be used to compute the node 
abnormality. The weights can be chosen based on 
available knowledge of metric importance. For 
instance, for a node intended to perform CPU 
intensive tasks the abnormality of CPU metrics 
will be given higher weight over the IO metrics. 

V. FAILURE DETECTION 
The traditional approach of failure detection 

has been to select a small set of probes that 
covers all network nodes and send these probes 
at a high frequency to quickly detect presence of 
any node failure. In this section, we demonstrate 
how the node abnormality information computed 
above can be used to intelligently select the 
probes and probing frequencies for failure 
detection, thereby resulting in less probe traffic 
and quicker detection. 

A. Desired probing frequency for node and 
probe 
The desired probing frequency for a probe can 

be recommended based on the abnormality 
measure of its nodes. Thus, we propose to 
compute path abnormality as a function of 
abnormalities of its nodes.  Various functions can 
be used to compute path abnormality. A 
conservative approach is to choose maximum of 
the node abnormality values, while an aggressive 
approach is to choose minimum. For the 
following discussion, we consider path 
abnormality as an average of abnormality values 
of the nodes on the path. Thus: 
Abnormality(P)=Avg n {Nodes(P)}(Abnormality(n)) 

The path abnormality can then be used to 
recommend probing frequency for a probe. Node 
showing high abnormality should be probed at 
higher frequency to quickly detect potential end-
to-end performance problem. Node showing 
consistent normal behaviour should be probed at 



a lesser frequency to reduce unnecessary probe 
traffic. Similarly, a probe with high path 
abnormality is likely to pass though unhealthy 
nodes demanding higher probing frequency. A 
probe with low path abnormality passes through 
the nodes showing expected normal behaviour 
and hence can be probed at a lower frequency.  

Note that a very aggressive approach of large 
decrease in probing frequency can harm in 
scenarios where a node failure causes end-to-end 
problems but the monitoring agents fail to 

large decrease in probing frequency of the 
perceived healthy paths can save on probe traffic 
but can cost increase in detection time. Hence, 
frequency should be set appropriately to balance 
such trade-off. For simplicity, we propose to use 
a rule-book to map range of node and path 
abnormality to recommended probing frequency. 
This rule-book can be constructed based on 
network properties and expert knowledge. As 
part of our on-going research, we are working on 
techniques to automate the rule-book 
construction and adapting the rule-book to 
changing network conditions. 

 
Algorithm 1: Fault Detection Probe-set Selection 

B. Probe Selection 
The probes for failure detection should be 

selected on the following criteria: 
(a) Coverage: This criterion indicates the number 
of nodes covered by a probe. The number of 
failure detection probes can be decreased by 
selecting probes that cover large number of nodes 
that are not covered by already selected probes. 
(b) Probe frequency match: This criterion 
indicates the match between the recommended 
and the desired probing frequency at each node 
on the probe path. Consider a scenario where 
many nodes on a probe path P demand a lower 
probing frequency than the probing frequency of 
the probe path P. In such cases, the probe P will 
result in the cost of sending additional probe 
traffic on these nodes. Also, when many nodes 
demand a probing frequency higher than the 
frequency of the probe path, it will result in 

collection of less data leading to potential 
delayed detection of failure of these nodes. Thus, 
the probes passing through nodes with similar 
probe frequency demands should be preferred to 
maximize the probe frequency match. We 
propose to compute following two metrics to 
evaluate a probe: (i) Additional probing cost 
(APC): to address scenarios where path probing 
frequency is greater than required node probing 
frequency. (ii) Monitoring loss (ML): to address 
scenarios where path probing frequency is 
smaller than required node probing frequency. 
Algorithm 1 computes ProbeScore for each 
probe based on the coverage, additional probing 
cost, and monitoring loss by the equation:  
ProbeScore  

set such that the selected probe 
passes through nodes with similar desired 
probing frequencies. We initialize these constants 
as -1,-2 and 3. However, they can be set to other 
values based on requirements. The algorithm 
selects probe with Max ProbeScore to group 
nodes with similar desired probing frequencies 
together till all the nodes in the network are 
covered. 
In order to capture changing network conditions, 
the probe selection process should be performed 
at periodic intervals or in the event of increase in 
unhealthy node count.  

 
Algorithm 2: Fault Localization Probe-set Selection 

VI. FAULT LOCALIZATION 
Once a failure is detected by failure detection 

probes, additional probes are sent to localize the 
failed node(s). In this section, we demonstrate 
how probe selection for fault localization can be 
improved by using the monitoring information. 
We demonstrate this improvement using the 
example of Min and Max Search proposed as 
part of the adaptive probing solution in [3]. We 
refer to the nodes on the path of the failed failure-
detection probes as the suspected nodes.  
(a) Min-Search: Min Search selects a probe for 
each suspected node which passes through the 
least number of other suspected nodes. Here, a 
failed probe quickly localizes the failed node, but 
a successful probe does not significantly prune 
the suspected node set. 



(b) Max-Search: Max Search selects probes that 
cover maximum number of suspected nodes. In 
this search, a failed probe needs additional 
probes to further localize the root-cause, but a 
successful probe significantly prunes the set of 
suspected nodes. 

We propose to use node health information to 
exploit the strengths of both Min and Max 
search. Probes for healthy and unhealthy nodes 
can be selected based on Max-Search and Min-
Search policy respectively. Thus, the probes 
selected using Max-Search policy are likely to 
succeed and hence will effectively prune the 
search space with minimal probes. The probes 
selected using Min-Search policy are likely to 
fail and will quickly localize the failed node(s). 
Algorithm 2 presents the proposed algorithm.  

 
Figure 2: Latency time-series sent by (a) traditional 
adaptive probing (1601 probes), (b) proposed adaptive 
probing (776 probes) 

 
Figure 3: Probes sent by different probing approaches. (a) 
total probes,(b) Probes for failure detection, (c) Probes for 
fault localization. 

VII. EXPERIMENTS AND RESULTS 
We simulated network topologies traffic 

through CSIM and evaluated the probing 
approaches to localize node failures. A node 
failure is modeled as a gradual increase in node 
processing latencies resulting in high end-to-end 
latencies of the ongoing traffic. At each node, we 
collected resource utilization metrics. Pings were 
sent as probes and latencies were calculated. We 
compared proposed approach with pre-planned 
probing [4] and adaptive probing [3].  

We first demonstrate the case of a single 
probe path where traditional adaptive probing 
sends probes at a constant frequency and the 
monitoring-based adaptive probing adapts the 
probing frequency. The monitoring-based 
adaptive probing approach is able to capture all 
the states of normal and unexpected behavior 
even after sending significantly lower traffic 
(Figure 2). 

We next performed experiments on a 20-node 
topology to localize failure of 2 nodes. All three 
algorithms accurately localized the failed nodes. 
We computed the number of probes sent by pre-
planned, traditional-adaptive, and proposed 
probing algorithms. Figure 3(a) shows that the 
number of probes computed by the proposed 
approach (453) is significantly less than pre-
planned probing (6490) and traditional-adaptive 
probing (1188). Figure 3(b) and 3(c) compute the 
number of probes sent by traditional-adaptive 
probing and the proposed approach for failure 
detection and fault localization. It can be seen 
that the proposed approach provides significant 
savings on the probe traffic.  

VIII. CONCLUSION AND FUTURE WORK 
We presented an adaptive probing solution for 

fault localization in a network by adapting the 
probing policies using the information provided 
by monitoring agents. We presented initial ideas 
to infer information captured by monitoring 
agents, and used this information to select probes 
and their frequency for failure detection and fault 
localization. We presented the proof-of-concept 
through simulations. 

While the proposed solution demands 
deployment of both monitoring and probing 
agents, we argue that an adaptive approach can 
significantly decrease the probing and monitoring 
demands compared to cases of using either of 
them in isolation. As part of our going research, 
we are also working on intelligently selecting 
minimal nodes to deploy monitoring agents. We 
are also working on several other aspects of this 
solution such as (a) different ways to compute 
node health and path health, (b) automating the 
rule-book to map path-health to probe frequency, 
(c) extensive experimental evaluation of 
proposed solution in real set-ups and simulations. 
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