
A Computationally Efficient Approach for
Exemplar-based Color Image Inpainting using GPU

Dibyam Pradhan∗, Naveen M.∗, Sai Hareesh A.∗, P.K. Baruah, V. Chandrasekaran
Sri Satya Sai Institute of Higher Learning, Prasanthi Nilayam, India

{dibyam4,naveenjoinsu}@gmail.com, {saihareesha,pkbaruah,vchandrasekaran}@sssihl.edu.in

Abstract—Image inpainting refers to the process of
reconstructing the original image from a damaged one
in a visually plausible way. We propose a new gradient-
based algorithm for exemplar-based inpainting by making
use of L∞ norm. We implement the most time consuming
step of the algorithm on the GPU and compare the serial
execution timings against the parallel execution timings.
The parallel implementation has an average speedup of
14 over the serial implementation. The results obtained
from our approach are perceptually on par and in many
cases better than the state-of-the-art approaches to date.

Index Terms—Inpainting, Exemplar-based inpainting,
L∞ norm, L2 norm

I. INTRODUCTION

The baton of delivering high performance has been
carried to a great extent in the recent times by the graphic
processing units (GPUs). The evolution of the CUDA
programming model has made it possible for the modern
GPUs to use massive multithreading for gaining huge
application performance. Depending on how well the
algorithm lends itself to parallelization, the GPU imple-
mentations provide correspondingly greater performance
as compared to the CPU implementations.Image inpaint-
ing is one such area which could benefit significantly by
the use of GPUs.

Image inpainting refers to the process of reconstruct-
ing the original image which has been damaged due to
factors such as ageing, wear and tear and occlusion.
The challenge lies in the fact that the observer seeing
the inpainted image should not be able to guess that
the image had been tampered with. There are a lot of
inpainting techniques available in literature. Some of
them are based on PDEs[1], some are statistical-based
techniques[2] and some exemplar-based techniques[3]
[4]. Due to the greater accuracy of inpainting, the recent
times has seen an increasing focus on exemplar-based
methods for image inpainting by researchers. The crux

∗Student Author

of the exemplar-based methods lies in searching the best
exemplar or the best patch in the undamaged portion
of the image that will be used for filling the damaged
portions of the image. Criminisi et al.[3] proposed an al-
gorithm that assigns a priority to each patch on the source
region(undamaged region) and finds the best exemplar
based on a best-first greedy strategy. Shen et al.[5] have
followed a gradient-based inpainting approach with the
help of a Poisson equation. The order in which the
patches are filled is decided by the values of the average
gradients of the patches on the boundary of the to-be
filled region.

The approach that we follow is quite similar to that
of Hareesh et. al.[6]. Hareesh et.al. have followed a
gradient-based approach for filling the damaged portions
by choosing a simple function that is a linear combina-
tion of the gradient and logarithm of gradient in order to
decide the filling priority. The best exemplar is chosen
such that it minimizes the L2 norm between the pixels
in the best exemplar and the pixels in the current patch
on the boundary of the damaged region(fill region). We
varied the algorithm as in [6] by changing the norm from
L2 to L∞ norm. We observed that this approach leads
to much better results than in [6]with regards to both
the quality of inpainting and the execution timings of
the application as a whole. Apart from adopting a new
approach, we also parallelized the most time consuming
step of the algorithm using CUDA and achieved remark-
able results. We perform a comparison of the CPU and
the GPU based implementations and notice a speedup
factor of 11 to 18 over the CPU implementation.

In this document, we first discuss the related work on
implementing image inpainting on GPUs(next section).
We then discuss our sequential exemplar-based inpaint-
ing algorithm in Section 4. Section 5 gives the details
of the CUDA implementation of the algorithm. Section
6 discusses the results. Section 7 deals with conclusion
and future work.

II. RELATED WORK

The literature abounds in algorithms for image inpaint-
ing but not many of them have been implemented on the
GPU. This may be due to the inherent sequential nature
of the algorithm or may be due to the high complexity
of the algorithm. However, there are some inpainting
algorithms that have been implemented on the GPUs.
Kwok et al. [7] have proposed an efficient algorithm for
exemplar-based inpainting, in which they separate the
exemplars into the frequency coefficients and select only
the relevant coefficients. The search for best exemplar is
done by the use of a search-array data structure, which
can easily be ported to the GPU.

Rosner et. al. [8] have presented efficient algorithms
for image warping and image inpainting for frame inter-
polation and their implementation on the GPU. For each
pixel on the boundary of the fill region, they propagate
its intensity to the fill region and calculate its distance
to the boundary of the fill region. Depending on this
distance and the intensity values, the pixel is inpainted.
All the above steps are implemented in GPUs. Their
GPU implementation had a speedup factor of about 6-10
over the CPU implementation. Chong [9] has followed
a texture-synthesis approach to image inpainting. He
assigns weights to all the pixels in the undamaged
portion of the image and based on these weights, he
determines the pixel to be replaced as the damaged
pixel that is most constrained by its neighbours. He then
replaces the chosen damaged pixel by the pixel with
the best neighbourhood match. The determination of the
to-be replaced pixel and its replacement is carried out
on GPU. Yousef et.al.[10] have tried to optimize the
exemplar-based image inpainting method by reducing the
number of queries and the arithmetic intensity of each
query and by using a different color space, YCbCr. They
also achieved good performance improvements.

The approach that we follow and its parallel imple-
mentation is not only efficient but also the inpainting
results are visually much better than most of the methods
that exist in literature[3][6].

III. EXEMPLAR-BASED INPAINTING ALGORITHM

We shall now discuss our exemplar-based algorithm.
Let us consider an image I which has been tampered
with and a region R which comprises of the tampered
portion of the image that has to be inpainted(see figure
1). Let B be the boundary of R. The inpainting of
the image is carried out by filling the pixels along the
boundary B of R by using sequences of patches from the
source region, S = I\R. This means that the boundary

B keeps getting reduced as the damaged or the fill region
gets filled and inpainting ends when the boundary B no
longer exists.

I
Fig. 1. Depiction of the notations used

The steps of the algorithm could be outlined as under:
1) Locate and mark the boundary B of the fill region.
2) For all p ∈ I , associate a confidence term C(p)

such that initially, C(p) = 0,∀p ∈ R , C(p) = 1
otherwise.

3) For each pixel, say p ∈ R, construct a rectangular
patch Pp with p as its center. As illustrated in
[3], there needs to be a patch-filling order for in-
painting of the patches along the boundary. Hence,
we compute the priorities of every pixel along the
boundary B, by K(p) = C(p).D(p), where D(p)
is the data term that signifies the strength of the
gradient function at that point as described in [6].

4) Find the patch Pq which has the maximum priority
among all the patches centered along the boundary
B.

5) Find a patch St, in the source region S that is
most similar to the patch Pq. The choice of St is
done such that it minimizes the norm d(St, Pq),
where d denotes L∞ norm in the CIE color Lab
space (L∗, a∗, b∗). This patch St is the known as
the best exemplar.

6) Copy image data from St to Pq, ∀p ∈ Pq ∩R.
7) Update C(p), ∀p ∈ Pq ∩R.
8) Repeat steps 3 to 7 till B is empty.

IV. OUR IMPLEMENTATION

We shall now discuss the serial implementation of the
above algorithm and then its parallel implementation.
The serial implementation of the algorithm was done in
Matlab in conjunction with C. Matlab provides a way of
integrating C code into the Matlab code with the help of

mex functions. Step 5 of the algorithm, which consists
of the search for the best exemplar was implemented in
C with the help of mex-files. The rest of the algorithm
was implemented in Matlab.

We analyzed the serial implementation of the algo-
rithm and found that the most expensive step in the
above algorithm is the search for the best exemplar,i.e.
step 5. We found that 70% of the time taken by the
entire application is spent on step 5. This suggested us to
analyze step 5 of the algorithm and consider possibilities
for parallelization. On careful analysis. we found that
this step has a lot of scope for parallelization. The serial
implementation of step 5 consists of the following steps:

1) For each patch in the source region S(see figure 1),
calculate the sum-squared error (SSE)of each pixel
in the current patch of S over the corresponding
to-be filled pixel in the target patch Pq.

2) Find the patch with the least error. This patch
becomes the best exemplar.

The above steps have a lot of data-parallelism and
could be easily parallelized with the help of the CUDA
programming model. Also, NVIDIA provides good sup-
port for using Matlab with CUDA and hence, we ported
step 5, the best exemplar search to GPUs using CUDA.

We shall now first discuss the parallel implementation
of step 5 as follows:

1) Copy the source image from the CPU host memory
to the GPU texture memory and copy the image
which has been marked with the region to be
filled(fill image) and the current patch from the
CPU host memory to the global memory in GPU.

2) We then launch a kernel with the total number of
threads equaling the total number of patches in the
source region S.

3) Make each thread responsible for a patch in the
source region S. Each thread now calculates the
SSE(sum-squared error) for all the pixels in its
patch and stores the error values in global memory.
Each patch is associated with an error value.

4) After all the threads have completed their work,
we just need to find the patch with the minimum
error which becomes the best exemplar. This step
is done sequentially.

V. RESULTS

The runtime measurements for both the CPU and the
GPU implementations were made primarily on an Intel
Quadcore machine equipped with NVIDIA Tesla C2050
graphics card. We perform the tests on three images of

(a) Original bungee image (b) fill region in green

(c) L2 serial result (c) L2 parallel result

(c) L∞ serial result (d) L∞ parallel result

Fig. 2. Results of inpainting on the bungee image

different sizes. The first image is the well-known bungee
image (206 x 308) as can be seen in figure 2. The second
image is windows xp’s beach image (238 x 180) and
a surfing image(750 x 500) (see figures 3 and 4). All
these images are three channel images. In the case of
the bungee image, we wish to remove the bungee jumper
from the original image in such a way that the observer
would not notice that there was a jumper in the original
image. Hence, we mark this region with green color.

Similarly, we mark the fill region with red color in the
beach image. In the surfing image, we wish to remove
the region marked by green color.

We first perform quality test for the inpainted image
by visual inspection and compare the resultant images of
our CPU and the GPU implementation which uses L∞
norm against the approach followed in [6] which uses the
L2 norm. We then compare the runtime measurements
of our implementation against the approach in [6]. Not
only did we parallelize our method, we also parallelized
the method as in [6] using a similar approach as above
to have a better comparison of the results. We shall now
discuss the results in detail.

A. Quality Test

Figures 2 to 4 display the results of the CUDA and C
implementations of the algorithm for the three images.
Figure 2 also depicts the results of the L∞ approach. The
quality of the results in the case of CUDA implemen-
tation is the same as that of the serial implementation
without any plausible change as could be seen in figure
2. This was the case for all the images. Also, it was
observed that the quality of the image for our proposed
L∞ norm yielded much better results in terms of quality
of inpainting and execution time than the L2 norm as
can be seen in figure 2.

(a) Original beach image (b) fill region in red

(c) L∞ serial result (d) L∞ parallel result

Fig. 3. Results of inpainting on the beach image

B. Runtime Test

The runtime calculation for all the images is done
first on the Quadcore machine with Tesla C2050 for
both the serial and parallel implementations of the best
exemplar search part of the algorithm. For the purpose

(a) Original surfing image (b) fill region in green

(c) L∞ serial result (d) L∞ parallel result

Fig. 4. Results of inpainting on the surfing image

Image name Serial timing CUDA timings Speedup
bungee 13.2444 1.0455 12.66
beach 6.0831 0.5043 12.06
surfing 151.1735 8.0349 18.81

TABLE I
EXECUTION TIMINGS IN SECONDS FOR BEST EXEMPLAR SEARCH

USING THE L2 NORM IN TESLA C2050

image name Serial timing CUDA timing Speedup
bungee 12.8163 1.1048 11.60
beach 5.598 0.4954 11.30
surfing 126.8789 7.0616 17.97

TABLE II
EXECUTION TIMINGS IN SECONDS FOR BEST EXEMPLAR SEARCH

USING THE L∞ NORM IN TESLA C2050

of correctness of the results, we only note down the total
time spent by the entire application in searching the best
exemplar. Table 1 displays the runtime measurements
for the serial versus CUDA implementation (of best
exemplar search) using the L2 norm and the effective
speedup obtained. A speedup factor of 12, 12 and 18
were obtained in the case of bungee image, beach image
and the surfing image respectively. Table 2 displays
the runtime measurements for the L∞ norm and the
speed-up obtained. In this case, a speedup of 11 to
18 were obtained for the three images. This proves
that the CUDA implementation outperforms the serial
implementation with respect to the execution timings.
Note that the execution timings for the proposed method
(L∞) is much lesser than that of the L2 approach. Hence,
the proposed method is better than the L2 method both
in terms of quality of inpainting as well as execution

Fig. 5. Execution timings against image sizes for the bungee
image(206x308) and the beach image(238x180) using our proposed
L∞ norm

Fig. 6. Execution timings for the surfing image(750x500) for the
Tesla C2050 and GeForce 310M using our proposed L∞ norm

timings.
Figure 5 compares the execution timings for the

bungee image and the beach image against the image
size for the proposed method. In both cases, there is
a seemingly greater reduction in the execution time
in parallel implementation as against the serial imple-
mentation with an increase in the size of the image.
Figure 6 compares the execution timings for the surfing
image when implemented in the core i3 machine with
NVIDIA GeForce 310M graphics card as against the
implementation on Tesla C2050 machine. As is expected,
the reduction in execution timings after parallelization is
far better in Tesla than in GeForce 310M.

VI. CONCLUSION AND FUTURE WORK

A new gradient-based algorithm for exemplar-based
color image inpainting using the L∞ norm was proposed
and the results were found to be computationally more
efficient as well as visually more plausible than the
existing methods. The most time consuming step of the

algorithm was implemented parallely on the GPU and
an average speedup of 14 over the sequential implemen-
tation was observed.

For future work, we propose to consider the usage of
the L∞ norm in other inpainting approaches. The pro-
posed exemplar-based approach along with the parallel
implementation could be extended to image segmenta-
tion, image blurring and also super-resolution as these
methods are computationally more intensive than the
inpainting methods. Also, the proposed algorithm could
be implemented totally in CUDA by using the OpenCV
library for image processing.

ACKNOWLEDGMENT

We dedicate this work to our founder Chancellor,
Bhagawan Sri Sathya Sai Baba. We also acknowledge
NVIDIA Pune, for providing all the computational fa-
cilities.

REFERENCES

[1] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and
Coloma Ballester, “Image inpainting,” in Proceedings of the
27th annual conference on Computer graphics and interactive
techniques, New York, NY, USA, 2000, SIGGRAPH ’00, pp.
417–424, ACM Press/Addison-Wesley Publishing Co.

[2] Anat Levin, Assaf Zomet, and Yair Weiss, “Learning how to
inpaint from global image statistics,” Computer Vision, IEEE
International Conference on, vol. 1, pp. 305, 2003.

[3] A. Criminisi, P. Prez, and K. Toyama, “Region filling and
object removal by exemplar-based image inpainting,” IEEE
Transactions on Image Processing, vol. 13, pp. 1200–1212,
2004.

[4] Jiying Wu and Qiuqi Ruan, “Object removal by cross isophotes
exemplar-based inpainting,” in Proceedings of the 18th In-
ternational Conference on Pattern Recognition - Volume 03,
Washington, DC, USA, 2006, ICPR ’06, pp. 810–813, IEEE
Computer Society.

[5] Jianbing Shen, Xiaogang Jin, Chuan Zhou, and Charlie C. L.
Wang, “Technical section: Gradient based image completion
by solving the poisson equation,” Comput. Graph., vol. 31, pp.
119–126, January 2007.

[6] Sai Hareesh Anamandra and Venkatachalam Chandrasekaran,
“Exemplar-based color image inpainting using a simple and
effective gradient function,” in IPCV, 2010, pp. 140–145.

[7] Tsz-Ho Kwok, Hoi Sheung, and Charlie C. L. Wang, “Fast
query for exemplar-based image completion,” Trans. Img. Proc.,
vol. 19, pp. 3106–3115, December 2010.

[8] Jakub Rosner, Hannes Fassold, Peter Schallauer, and Werner
Bailer, “Fast gpu-based image warping and inpainting for
frame interpolation,” International Conferences on Computer
Graphics, Vision and Mathematics, GraVisMa 2010.

[9] Hamilton Chong, “Gpu image inpainting via texture synthesis,”
http://www.eecs.harvard.edu/ hchong/goodies/inpaint.pdf.

[10] Mohamed Yousef and Khaled F. Husien, “Par xii: Optimized,
data-parallel exemplar-based image inpainting,” SIGGRAPH
2011 poster.

