
Effective GPU Strategies for LU Decomposition
H. M. D. M. Bandara* & D. N. Ranasinghe

University of Colombo School of Computing, Sri Lanka
dinesh.methsiri@gmali.com, dnr@ucsc.cmb.ac.lk

Abstract— GPUs are becoming an attractive computing
platform not only for traditional graphics computation
but also for general-purpose computation because of the
computational power, programmability and
comparatively low cost of modern GPUs. This has lead to
a variety of complex GPGPU applications with
significant performance improvements. The LU
decomposition represents a fundamental step in many
computationally intensive scientific applications and it is
often the costly step in the solution process because of the
impact of size of the matrix. In this paper we implement
three different variants of the LU decomposition
algorithm on a Tesla C1060 and the most significant LU
decomposition that fits the highly parallel architecture of
modern GPUs is found to be Update through Column
with shared memory access implementation.

Keywords—LU decomposition, CUDA, GPGPU

I. INTRODUCTION
High performance computing is relevant for a wide

range of scientific fields including physics, astronomy,
and chemistry. Numerical computation is a necessary
procedure in all these scientific fields. LU
decomposition is one such important computational
operation. Matrix factorization is a primary subject
matter in linear algebra and applied statistics which
has both scientific and engineering significance [1].
The domains of matrix factorization normally involve
two aspects called computational convenience and
analytic simplicity. In real world, it is not practicable
for most of the matrix computations such as matrix
inversion, solving linear systems to be calculated in an
optimal explicit way. Matrix factorization is used for
converting a difficult matrix computation problem in
to several easier tasks which can be used to solve
those matrix computations.

The modern GPU is a powerful graphics engine as
well as a highly parallel programmable processor
providing fast arithmetic and memory bandwidth that
are superior to traditional CPUs’ capabilities [2].
Recent improvements of GPU’s highly parallel
programming capabilities such as CUDA [3] have lead
to the mapping of wide variety of complex application
with tremendous performance improvements. The
goal of our work is to find out effective ways of
performing LU Decomposition on GPUs. We present
its design with different implementation approaches
and measure the performance of those approaches.

The paper is organized as follows. Section 2
presents an overview related work. Section 3 describes
the design approaches that compose our methods,
Section 4 shows the implementations of those design

approaches, Section 5 shows the results and
performance studies obtained on our test environment
and then finally Section 6 concludes the paper.

II. RELATED WORK
A few research works on LU decomposition with

the support of highly parallel GPU environments have
been carried out and had not been able to accelerate it
much. In [4] Ino et al. they have developed and
evaluated some implementation methods for LU
Decomposition in terms of (a) loop processing (b)
branch processing and (c) vector processing. In [5]
Gappalo et al. have reduced matrix decomposition and
row operations to a series of rasterization problems on
GPU. They have mapped the problem to GPU
architecture based on the fact that fundamental
operations in matrix decomposition are elementary
row operations and introduced new techniques such as
streaming index pairs, efficient row and column
swapping by parallel data transfer and parallelizing
computation. Performance results of their
implementations were comparable to the performance
of optimized CPU based implementation and conclude
that GPUs that they used are not suited for the LU
decomposition. In [6] Barrachina et al. they have
evaluated three blocked variants of Cholesky and LU
factorizations with highly tuned BLAS
implementations on a Nvidia G80 and an Intel
processor and gain considerable performance. They
have said that simple techniques of padding, hybrid
GPU-CPU computation and recursion have increased
the performance of implementation. Baboulin et al. [7]
addressed some issues in designing dense linear
algebra algorithms which are common for both multi-
cores and many-cores.

III. DESIGN
LU decomposition is an algebraic process that

transforms a matrix A into a product of a lower
triangular matrix L whose elements are only on the
diagonal and below, and an upper triangular matrix U
whose elements are only on the diagonal and above.
The main use of LU decomposition is to solve linear
systems. Also it can be used to compute the
determinant and the inverse of a matrix.

To illustrate the idea of solving a linear system by
using LU decomposition, the system is expressed in
matrix form as follows:

Where A is N * N matrix with the coefficients of
* Student Author

the system, x is a column vector with the unknowns
and b is also a column vector with the right-hand side
of the system’s equation. We can consider matrix A as
two sub-matrices by making the LU decomposition of
A and equation (1) can be rewritten as follows:

To solve (2), it is enough to compute two simpler
linear systems as in (3)

Equations in (3) can be solved by forward and
backward substitution of variables. For instance, in (3)
as U is an upper triangular matrix, the coefficients of
the first equation are all zero except one. So, the first
unknown can be determined by a simple division of
the right-hand side by the only non-null coefficient.
After this calculation, we can proceed in a similar way
by the rest of equations of the system. When the
problem size n is sufficiently large, forward and
backward functions take respectively less time than
solving the system in straight forward way.

The question that would arise next is how the LU
decomposition of a matrix A can be computed? The
algorithm we are using in our project is the right-
looking LU decomposition [8].

Fig. 1 Sequential right-looking Algorithm

Figure 1 shows the familiar recursive right-looking
algorithm that computes a block row and column at
each step and uses them to update the trailing sub-
matrix. In right-looking LU decomposition, the matrix
is traversed by columns from left to right. At each
step, computations are performed on the current
column, and then updates to columns to the right of
that column are performed immediately. Because
updates are performed as soon as the current column is
computed. There are dependencies between outer i
loop iterations, and because of that we could not pass
this in to GPU in a straight forward way (Figure 1).
The dependencies in this algorithm are as follows

 The outer i loop iterations cannot be executed
independently.

 The inner k loop iterations can be executed
independently and those must be processed
after completing the assignment operation.
+

Due to the dependencies mentioned above
following reconstructions help to create a suitable
parallel algorithm which is showed in Figure 2. That is
by Loop decomposition method. By using that method

updating L and U is decomposed in to 2 loops. Those
loops have to execute in parallel.

Fig. 2 Parallel right-looking Algorithm

Algorithm can be parallelized using two loops one
for updating lower triangular matrix and one for
updating upper triangular matrix. The main challenge
of this algorithm is size of the sub-matrix which is
involved in updating process getting reduced in the
each iteration. In the same time most of the sub-matrix
elements are accessed in the process of updating upper
triangular matrix (Figure 3).

Fig. 3 Sub-matrix in ith iteration

Access patterns of these elements have a high
impact on the overall performance of the LU
decomposition. In order to achieve better
performance, it should be important to have an
efficient memory access pattern. Therefore we have
concentrated on the use of per-thread local memory
(register), per-block shared memory, texture memory
and the global memory and also attempted to
minimize the communication between main memory
and device memory. When we consider about an
efficient memory access pattern, blocking becomes the
core strategy. Blocking strategy provides two level of
parallelism

1) Parallelism among threads within a single block
2) Parallelism among several blocks

The process which updates the lower triangular
matrix, only accesses a single column of the sub-
matrix. So the efficiency of the algorithm highly
depends on the updating process of the upper
triangular matrix. Therefore we have proposed 3
different design patterns with a blocking strategy to
update the upper triangular matrix. Those are,

 Update through rows
 Update through column
 Update each element

IV. IMPLEMENTATION
In parallel implementation of LU decomposition the

CPU is responsible for initializing the matrix and
updating lower and upper triangular process
management.GPU only concentrates on updating
processes. And also CPU is responsible for allocating
device memory, copy host variables to device
variables and copy the computed device variables
back to host variables.

Fig. 4 Update through Row Strategy

Fig. 5 Update through Column Strategy

Fig. 6 Update each Element Strategy

If we look closely at the parallel algorithm in Figure
3 we can clarify that some of the data elements in the
sub-matrix can be shared. When it executes the ith
iteration, ith row and column can be shared.

A. Update Through Row
In this approach, sub-matrix elements which are

involved in updating upper triangular process are
divided into several blocks and it is also divided into
rows. Each row in that block is updated by a different
thread. Figure 4 shows the blocking strategy and how
thread is allocated to a row in that block. This
approach is implemented in two scenarios;

1) Update through Row with Global Memory
Access: In this scenario there is no need of
synchronization among the thread within the block.
There is no data dependency among rows in the sub-
matrix because each thread has to deal with global
memory for all read and write operations and no
shared data is kept on on-chip shared memory.
Therefore each thread can execute independently.

2) Update through Row with Shared Memory
Access: Our next level of Update through approach is

based on effective use of both shared memory and
global memory. Firstly, threads initialize the shared
memory block using the values in the global memory.
After that threads are involved to do the updating
process through the row. In this approach we have to
be strongly concerned about the synchronization
among the threads in a block to avoid data conflicts
inside the CUDA kernel [3].

B. Update Through Column
Also in this strategy a sub-matrix is divided in to
several blocks. But the difference of this approach
when compared to the previous approach is that
blocks are divided into columns. Each column is
updated by a thread. Figure 5 shows how this strategy
works. Same as the update through row approach this
strategy is also implemented in two scenarios;

1) Update through Column with Global Memory
Access: Same as the Update through Rows with global
memory access implementation, there is no data
dependency among columns in the sub-matrix. With
this kernel implementation, to update columns all the
memory read and writes operations deal with the
global (device) memory. As a result of that each
thread executes their code without a synchronization
barrier.

2) Update through Column with Shared Memory
Access: This implementation is also based on the
blocking strategy and collaborates with the memory
use of global and shared memory. As we discussed in
the Update through Rows with shared memory access
implementation, the same set of data can be shared in
this approach. So thread synchronization is a must.

C. Update Each Element
This is a simple approach when compared with the

other approaches. Same as the previous approaches
sub-matrix involves in the updating upper triangular
process is divided in to several blocks and each
element in a block is updated by a different thread.
Figure 6 describes this strategy.

This strategy for LU decomposition also considers
about blocking strategy and does not have special
memory access pattern column through or row
through. In this implementation, all the memory read,
write operations are deal with the global memory and
no shared memory involvement. As a result of that
there are no synchronization barriers. This
implementation is able to create more threads and
utilized the GPU architecture in better way.

V. PERFORMANCE STUDY
We discuss the evaluation results and some

discussion based on those results in this section. To
compare the performance of three LU decomposition
implementations on GPU, we have used a NVIDIA
Tesla C1060 GPU which was connected to a PC with
Intel Xeon X5570 Quad-Core processor running at

Fig. 7 Execution time comparison of CPU based implementation
and simple (without blocking) GPU based implementation

Fig. 8 Execution time comparison of Global memory access
implementation and Shared memory access implementation of
update through row strategy

Fig. 9 Execution time comparison of Global memory access
implementation and Shared memory access implementation of
update through column strategy

Fig.10 Execution time comparison of shared memory access
implementations of update through column and column strategies
and update each element implementation

2.93GHz with 4GB RAM and running on Linux. .N*N
square matrices, where the N ranged from 256 to 8196
were used for experiments. All of these matrices were
initialized to floating point numbers.

A. Results
Before moving in to the GPU strategies, as the first

evaluation step, we compared CPU based sequential
algorithm implementation and the non blocking
simple GPU based parallel implementation. Figure 7
shows the performance comparison derived from
those implementations.

1) Global Memory Vs Shared Memory in Update
through Row Strategy: Here we move on to our first
implementation approach Update through row. Under
this approach we did two kinds of implementations as
we have discussed. One is global memory based
implementation and other implementation used a
combination of shared memory and global memory.
Comparison between these two implementations is
shown in Figure 8.

2) Global Memory Vs Shared Memory in Update
through Column Strategy: Our second implementation
approach is Update through column strategy. Same as
in the update through row approach there are two
implementations based on the global memory and
combination of global and shared memory. Figure 9
shows the comparison between those two
implementations

3) Global Memory Vs Shared Memory in Update
through Row Strategy: Blocking strategy and all of
our three strategies use different kinds of memory

access patterns. We compared each implementation
within the strategy. Here we compared update through
row with shared memory access implementation,
update through column with shared memory access
implementation, and update each element
implementation to identify the better execution
performance. Figure 10 shows the comparison among
those implementations.

B. Analysis and Discussion
As the problem size scales up it requires a bigger

memory and computational power to complete the job.
According to the Figure 8 it is clear how important it
is to map general purpose algorithms which need huge
computational power for computation into GPU to
gain better performance than on the CPU.

Fig. 11 Execution time comparison for block size in update through
column with shared memory access

Even though CUDA facilitates to execute programs
using thousands of threads, without an appropriate
design which can utilize the environment it became a
vain effort. In order to construct an efficient parallel
algorithm for CUDA, we have to concern about the
various memory levels which are provided by CUDA.
Only using device memory which is implemented with

dynamic random access memory (DRAM), without
efficient use of other memory levels may lead to poor
performance. Rearranging the algorithm to make use
of those memories may lead to better performance.

We have implemented both global memory access
and shared memory access implementations for both
update through row and update through column
strategies. From the shared memory implementations
we have tried to improve performance of our
algorithm by using the on-chip shared memory. The
reason for poor performance when accessing global
memory is, it has long latency to read and write
operations. Access speed of the shared memory is
higher than that of global memory, but the problem is
the limited size of the shared memory and how to use
it effectively. Blocking strategy provides a solution for
that and leads to better performance than global
memory access implementation. From both Figure 9
and 10 we can illustrate the difference between device
memory based and shared memory based
implementations. When considered the simplicity of
accessing the global memory it does not need extra
thread synchronization. But in the shared memory
implementations we had to be concerned about the
parallelism of threads within a single block because of
the complexity of the memory access pattern. But with
the fast access of the shared memory it leads to a
speedup above the global memory based
implementation.

According to Figure 10 which compares shared
memory based updating through row implementation,
shared memory based updating through column
implementation and updating each element
implementation, we can see updating through column
with shared memory access implementation shows the
better performance among those implementations.

This is due to the global memory access pattern of
that implementation. When accessing the global
memory (DRAM) it prefers to access nearby memory
locations rather than accessing a random sequence of
locations. If a kernel arranges its data access pattern in
that way, it achieves close to the peak global memory
bandwidth. Update through column implementation
provides this access pattern. As a result of that 32
threads (wrap) read their data from global memory
with only one access. This technique is called memory
coalesced technique [9]. Update through row
implementation shows worst results because it has the
unfavourable memory access pattern.

CUDA provides limited amount of on-chip memory.
Therefore the programmer has to be careful not to
exceed limits when using on-chip memories (shared
memory and register memory). On other hand it limits
the number of threads that be reside inside stream
processor(SM). As a result of that it also limits the
threads besides in multiprocessor (MP). We
mentioned earlier that usage of local register memory
can affect the number of threads inside a stream

processor. According to Figure 11 we can see that
optimal thread block size was 64 which were utilized
our test environment effectively.

VI. CONCLUSIONS
In this research we have used the highly parallel

architecture of GPU as a solution for the problem of
LU decomposition with the support of CUDA. For
that we have used right-looking algorithm as the
benchmarked algorithm for LU decomposition which
has satisfied the parallelism. We have proposed three
strategies for implementation of LU decomposition 1)
Update through row, 2) Update through column and 3)
Update each element

We have tried our main three strategies with
blocking to improve the performance. By comparing
the global memory and shared memory
implementations of first two approaches, the shared
memory implementation has lead to a speedup than
the global memory implementation.

Our final approach was on updating matrix element
by using a thread for each element. By comparing the
update each element implementation with shared
memory based implementations of update through row
and update through column, update through column
obtained the best result and update through row
showed the worst result. The key idea behind that is
that update through column provides the best access
pattern of memory by collaborating with hardware
features.

REFERENCES
[1] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.

Vetterling, Numerical Recipes in C: The Art of Scientific
Computing, Second Edition. Cambridge University Press,
1992, pp. 31-38

[2] D. Luebke S. Green J. E. Stone J. D. Owens, M. Houston,
and J. C. Phillips, Gpu computing. Proceedings of the IEEE,
96(5):879–899, May 2008.

[3] NVIDIA Corporation. NVIDIA CUDA C Programming
Guide - Version 3.2, October 2010.

[4] F, Ino, K.Goda, M, Matsui, and K. Hagihara. Performance
study of lu decomposition on the programmable gpu*. In
Proceedings of the 12th IEEE international conference High
erformance Computing, HiPC05, page 83–94, Washington,
DC, USA, 2005. IEEE Computer Society

[5] N. Galoppo, N. K. Govindaraju, M.Henson, and D.
Manocha. LU-GPU: Efficient algorithms for solving dense
linear systems on graphics hardware. In Proceedings of the
2005 ACM/IEEE conference on Supercomputing, SC ’05,
Washington, DC, USA, 2005. IEEE Computer Society.

[6] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S.
Quintana-Ortí. Solving dense linear systems on graphics
processors. In Proceedings of the 14th international Euro-
Par conference on Parallel Processing, Euro-Par ’08,
pages739–748, Berlin, Heidelberg, 2008. Springer-Verlag.

[7] M. Baboulin, J. Dongarra, and S. Tomov. Some issues in
dense linear algebra for multicore and special purpose
architectures.

[8] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der
Vorst, Numerical Linear Algebra on High-Performance
Computers, 2nd ed. Society for Industrial Mathematics,
January 1987.

[9] P. Micikevicius. Optimizing cuda [online]. Available:
http://mc.stanford.edu/cgibin/images/0/0a/M02_4.pdf

