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Abstract— GPUs are becoming an attractive computing 
platform not only for traditional graphics computation 
but also for general-purpose computation because of the 
computational power, programmability and 
comparatively low cost of modern GPUs. This has lead to 
a variety of complex GPGPU applications with 
significant performance improvements. The LU 
decomposition represents a fundamental step in many 
computationally intensive scientific applications and it is 
often the costly step in the solution process because of the 
impact of size of the matrix. In this paper we implement 
three different variants of the LU decomposition 
algorithm on a Tesla C1060 and the most significant LU 
decomposition that fits the highly parallel architecture of 
modern GPUs is found to be Update through Column 
with shared memory access implementation. 
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I. INTRODUCTION 
High performance computing is relevant for a wide 

range of scientific fields including physics, astronomy, 
and chemistry. Numerical computation is a necessary 
procedure in all these scientific fields. LU 
decomposition is one such important computational 
operation. Matrix factorization is a primary subject 
matter in linear algebra and applied statistics which 
has both scientific and engineering significance [1]. 
The domains of matrix factorization normally involve 
two aspects called computational convenience and 
analytic simplicity. In real world, it is not practicable 
for most of the matrix computations such as matrix 
inversion, solving linear systems to be calculated in an 
optimal explicit way.  Matrix factorization is used for 
converting a difficult matrix computation problem in 
to several easier tasks which can be used to solve 
those matrix computations. 

The modern GPU is a powerful graphics engine as 
well as a highly parallel programmable processor 
providing fast arithmetic and memory bandwidth that 
are superior to traditional CPUs’ capabilities [2]. 
Recent improvements of GPU’s highly parallel 
programming capabilities such as CUDA [3] have lead 
to the mapping of wide variety of complex application 
with tremendous performance improvements. The 
goal of our work is to find out effective ways of 
performing LU Decomposition on GPUs. We present 
its design with different implementation approaches 
and measure the performance of those approaches. 

The paper is organized as follows. Section 2 
presents an overview related work. Section 3 describes 
the design approaches that compose our methods, 
Section 4 shows the implementations of those design 

approaches, Section 5 shows the results and 
performance studies obtained on our test environment 
and then finally Section 6 concludes the paper. 

II. RELATED WORK 
A few research works on LU decomposition with 

the support of highly parallel GPU environments have 
been carried out and had not been able to accelerate it 
much. In [4] Ino et al. they have developed and 
evaluated some implementation methods for LU 
Decomposition in terms of (a) loop processing (b) 
branch processing and (c) vector processing. In [5] 
Gappalo et al. have reduced matrix decomposition and 
row operations to a series of rasterization problems on 
GPU. They have mapped the problem to GPU 
architecture based on the fact that fundamental 
operations in matrix decomposition are elementary 
row operations and introduced new techniques such as 
streaming index pairs, efficient row and column 
swapping by parallel data transfer and parallelizing 
computation. Performance results of their 
implementations were comparable to the performance 
of optimized CPU based implementation and conclude 
that GPUs that they used are not suited for the LU 
decomposition. In [6] Barrachina et al. they have 
evaluated three blocked variants of Cholesky and LU 
factorizations with highly tuned BLAS 
implementations on a Nvidia G80 and an Intel 
processor and gain considerable performance. They 
have said that simple techniques of padding, hybrid 
GPU-CPU computation and recursion have increased 
the performance of implementation. Baboulin et al. [7] 
addressed some issues in designing dense linear 
algebra algorithms which are common for both multi- 
cores and many-cores. 

III. DESIGN 
LU decomposition is an algebraic process that 

transforms a matrix A into a product of a lower 
triangular matrix L whose elements are only on the 
diagonal and below, and an upper triangular matrix U 
whose elements are only on the diagonal and above.  
The main use of LU decomposition is to solve linear 
systems. Also it can be used to compute the 
determinant and the inverse of a matrix. 

To illustrate the idea of solving a linear system by 
using LU decomposition, the system is expressed in 
matrix form as follows: 

 

 
 
  

Where A is N * N matrix with the coefficients of 
* Student Author 
 



the system, x is a column vector with the unknowns 
and b is also a column vector with the right-hand side 
of the system’s equation. We can consider matrix A as 
two sub-matrices by making the LU decomposition of 
A and equation (1) can be rewritten as follows: 

  

  
  

To solve (2), it is enough to compute two simpler 
linear systems as in (3) 

  
         
 

Equations in (3) can be solved by forward and 
backward substitution of variables. For instance, in (3) 
as U is an upper triangular matrix, the coefficients of 
the first equation are all zero except one. So, the first 
unknown can be determined by a simple division of 
the right-hand side by the only non-null coefficient. 
After this calculation, we can proceed in a similar way 
by the rest of equations of the system. When the 
problem size n is sufficiently large, forward and 
backward functions take respectively less time than 
solving the system in straight forward way. 

The question that would arise next is how the LU 
decomposition of a matrix A can be computed? The 
algorithm we are using in our project is the right- 
looking LU decomposition [8]. 

  

  
Fig. 1 Sequential right-looking Algorithm  

Figure 1 shows the familiar recursive right-looking 
algorithm that computes a block row and column at 
each step and uses them to update the trailing sub- 
matrix. In right-looking LU decomposition, the matrix 
is traversed by columns from left to right. At each 
step, computations are performed on the current 
column, and then updates to columns to the right of 
that column are performed immediately. Because 
updates are performed as soon as the current column is 
computed. There are dependencies between outer i 
loop iterations, and because of that we could not pass 
this in to GPU in a straight forward way (Figure 1). 
The dependencies in this algorithm are as follows 

 The outer i loop iterations cannot be executed 
independently. 

 The inner k loop iterations can be executed 
independently and those must be processed 
after completing the assignment operation. 
+ 

Due to the dependencies mentioned above 
following reconstructions help to create a suitable 
parallel algorithm which is showed in Figure 2. That is 
by Loop decomposition method. By using that method 

updating L and U is decomposed in to 2 loops. Those 
loops have to execute in parallel. 

  

  
Fig. 2 Parallel right-looking Algorithm 

Algorithm can be parallelized using two loops one 
for updating lower triangular matrix and one for 
updating upper triangular matrix. The main challenge 
of this algorithm is size of the sub-matrix which is 
involved in updating process getting reduced in the 
each iteration. In the same time most of the sub-matrix 
elements are accessed in the process of updating upper 
triangular matrix (Figure 3). 

  

  
Fig. 3 Sub-matrix in ith iteration 

Access patterns of these elements have a high 
impact on the overall performance of the LU 
decomposition. In order to achieve better 
performance, it should be important to have an 
efficient memory access pattern. Therefore we have 
concentrated on the use of per-thread local memory 
(register), per-block shared memory, texture memory 
and the global memory and also attempted to 
minimize the communication between main memory 
and device memory. When we consider about an 
efficient memory access pattern, blocking becomes the 
core strategy. Blocking strategy provides two level of 
parallelism 

1) Parallelism among threads within a single block 
2) Parallelism among several blocks 
 

The process which updates the lower triangular 
matrix, only accesses a single column of the sub- 
matrix. So the efficiency of the algorithm highly 
depends on the updating process of the upper 
triangular matrix. Therefore we have proposed 3 
different design patterns with a blocking strategy to 
update the upper triangular matrix. Those are,  

 Update through rows 
 Update through column 
 Update each element 



IV. IMPLEMENTATION 
In parallel implementation of LU decomposition the 

CPU is responsible for initializing the matrix and 
updating lower and upper triangular process 
management.GPU only concentrates on updating 
processes. And also CPU is responsible for allocating 
device memory, copy host variables to device 
variables and copy the computed device variables 
back to host variables. 

 
Fig. 4 Update through Row Strategy 

 
Fig. 5 Update through Column Strategy 

 
Fig. 6 Update each Element Strategy 

If we look closely at the parallel algorithm in Figure 
3 we can clarify that some of the data elements in the 
sub-matrix can be shared. When it executes the ith 
iteration, ith row and column can be shared. 

A. Update Through Row 
In this approach, sub-matrix elements which are 

involved in updating upper triangular process are 
divided into several blocks and it is also divided into 
rows. Each row in that block is updated by a different 
thread. Figure 4 shows the blocking strategy and how 
thread is allocated to a row in that block. This 
approach is implemented in two scenarios; 

1)  Update through Row with Global Memory 
Access: In this scenario there is no need of 
synchronization among the thread within the block. 
There is no data dependency among rows in the sub- 
matrix because each thread has to deal with global 
memory for all read and write operations and no 
shared data is kept on on-chip shared memory. 
Therefore each thread can execute independently.  

2)  Update through Row with Shared Memory 
Access: Our next level of Update through approach is 

based on effective use of both shared memory and 
global memory. Firstly, threads initialize the shared 
memory block using the values in the global memory. 
After that threads are involved to do the updating 
process through the row. In this approach we have to 
be strongly concerned about the synchronization 
among the threads in a block to avoid data conflicts 
inside the CUDA kernel [3]. 

B. Update Through Column 
Also in this strategy a sub-matrix is divided in to 
several blocks. But the difference of this approach 
when compared to the previous approach is that 
blocks are divided into columns. Each column is 
updated by a thread. Figure 5 shows how this strategy 
works. Same as the update through row approach this 
strategy is also implemented in two scenarios; 

1)   Update through Column with Global Memory 
Access: Same as the Update through Rows with global 
memory access implementation, there is no data 
dependency among columns in the sub-matrix. With 
this kernel implementation, to update columns all the 
memory read and writes operations deal with the 
global (device) memory. As a result of that each 
thread executes their code without a synchronization 
barrier. 

2)  Update through Column with Shared Memory 
Access: This implementation is also based on the 
blocking strategy and collaborates with the memory 
use of global and shared memory. As we discussed in 
the Update through Rows with shared memory access 
implementation, the same set of data can be shared in 
this approach. So thread synchronization is a must. 

C. Update Each Element 
This is a simple approach when compared with the 

other approaches. Same as the previous approaches 
sub-matrix involves in the updating upper triangular 
process is divided in to several blocks and each 
element in a block is updated by a different thread. 
Figure 6 describes this strategy. 

This strategy for LU decomposition also considers 
about blocking strategy and does not have special 
memory access pattern column through or row 
through. In this implementation, all the memory read, 
write operations are deal with the global memory and 
no shared memory involvement. As a result of that 
there are no synchronization barriers. This 
implementation is able to create more threads and 
utilized the GPU architecture in better way. 

V. PERFORMANCE STUDY 
We discuss the evaluation results and some 

discussion based on those results in this section. To 
compare the performance of three LU decomposition 
implementations on GPU, we have used a NVIDIA 
Tesla C1060 GPU which was connected to a PC with 
Intel Xeon X5570 Quad-Core processor running at 



 

 
Fig. 7 Execution time comparison of CPU based implementation 
and simple (without blocking) GPU based implementation 
 

 

 
Fig. 8 Execution time comparison of Global memory access 
implementation and Shared memory access implementation of 
update through row strategy 

 

 
Fig. 9 Execution time comparison of Global memory access 
implementation and Shared memory access implementation of 
update through column strategy 
 

 
Fig.10 Execution time comparison of shared memory access 
implementations of update through column and column strategies 
and update each element implementation 

2.93GHz with 4GB RAM and running on Linux. .N*N 
square matrices, where the N ranged from 256 to 8196 
were used for experiments. All of these matrices were 
initialized to floating point numbers. 

A. Results 
Before moving in to the GPU strategies, as the first 

evaluation step, we compared CPU based sequential 
algorithm implementation and the non blocking 
simple GPU based parallel implementation. Figure 7 
shows the performance comparison derived from 
those implementations.  

1)  Global Memory Vs Shared Memory in Update 
through Row Strategy: Here we move on to our first 
implementation approach Update through row. Under 
this approach we did two kinds of implementations as 
we have discussed. One is global memory based 
implementation and other implementation used a 
combination of shared memory and global memory. 
Comparison between these two implementations is 
shown in Figure 8. 

2)  Global Memory Vs Shared Memory in Update 
through Column Strategy: Our second implementation 
approach is Update through column strategy. Same as 
in the update through row approach there are two 
implementations based on the global memory and 
combination of global and shared memory. Figure 9 
shows the comparison between those  two 
implementations  

3)  Global Memory Vs Shared Memory in Update 
through Row Strategy: Blocking strategy and all of 
our three strategies use different kinds of memory 

access patterns. We compared each implementation 
within the strategy. Here we compared update through 
row with shared memory access implementation, 
update through column with shared memory access 
implementation, and update each element 
implementation to identify the better execution 
performance. Figure 10 shows the comparison among 
those implementations. 

B. Analysis and Discussion 
As the problem size scales up it requires a bigger 

memory and computational power to complete the job. 
According to the Figure 8 it is clear how important it 
is to map general purpose algorithms which need huge 
computational power for computation into GPU to 
gain better performance than on the CPU. 

 

 
Fig. 11 Execution time comparison for block size in update through 
column with shared memory access 
 

Even though CUDA facilitates to execute programs 
using thousands of threads, without an appropriate 
design which can utilize the environment it became a 
vain effort. In order to construct an efficient parallel 
algorithm for CUDA, we have to concern about the 
various memory levels which are provided by CUDA. 
Only using device memory which is implemented with 



dynamic random access memory (DRAM), without 
efficient use of other memory levels may lead to poor 
performance. Rearranging the algorithm to make use 
of those memories may lead to better performance. 

 

We have implemented both global memory access 
and shared memory access implementations for both 
update through row and update through column 
strategies. From the shared memory implementations 
we have tried to improve performance of our 
algorithm by using the on-chip shared memory. The 
reason for poor performance when accessing global 
memory is, it has long latency to read and write 
operations. Access speed of the shared memory is 
higher than that of global memory, but the problem is 
the limited size of the shared memory and how to use 
it effectively. Blocking strategy provides a solution for 
that and leads to better performance than global 
memory access implementation. From both Figure 9 
and 10 we can illustrate the difference between device 
memory based and shared memory based 
implementations. When considered the simplicity of 
accessing the global memory it does not need extra 
thread synchronization. But in the shared memory 
implementations we had to be concerned about the 
parallelism of threads within a single block because of 
the complexity of the memory access pattern. But with 
the fast access of the shared memory it leads to a 
speedup above the global memory based 
implementation. 

According to Figure 10 which compares shared 
memory based updating through row implementation, 
shared memory based updating through column 
implementation and updating each element 
implementation, we can see updating through column 
with shared memory access implementation shows the 
better performance among those implementations.  

This is due to the global memory access pattern of 
that implementation. When accessing the global 
memory (DRAM) it prefers to access nearby memory 
locations rather than accessing a random sequence of 
locations. If a kernel arranges its data access pattern in 
that way, it achieves close to the peak global memory 
bandwidth. Update through column implementation 
provides this access pattern. As a result of that 32 
threads (wrap) read their data from global memory 
with only one access. This technique is called memory 
coalesced technique [9]. Update through row 
implementation shows worst results because it has the 
unfavourable memory access pattern. 

CUDA provides limited amount of on-chip memory. 
Therefore the programmer has to be careful not to 
exceed limits when using on-chip memories (shared 
memory and register memory). On other hand it limits 
the number of threads that be reside inside stream 
processor(SM). As a result of that it also limits the 
threads besides in multiprocessor (MP). We 
mentioned earlier that usage of local register memory 
can affect the number of threads inside a stream 

processor. According to Figure 11 we can see that 
optimal thread block size was 64 which were utilized 
our test environment effectively. 

VI. CONCLUSIONS 
In this research we have used the highly parallel 

architecture of GPU as a solution for the problem of 
LU decomposition with the support of CUDA. For 
that we have used right-looking algorithm as the 
benchmarked algorithm for LU decomposition which 
has satisfied the parallelism. We have proposed three 
strategies for implementation of LU decomposition 1) 
Update through row, 2) Update through column and 3) 
Update each element 

We have tried our main three strategies with 
blocking to improve the performance. By comparing 
the global memory and shared memory 
implementations of first two approaches, the shared 
memory implementation has lead to a speedup than 
the global memory implementation. 

Our final approach was on updating matrix element 
by using a thread for each element. By comparing the 
update each element implementation with shared 
memory based implementations of update through row 
and update through column, update through column 
obtained the best result and update through row 
showed the worst result. The key idea behind that is 
that update through column provides the best access 
pattern of memory by collaborating with hardware 
features. 
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