

Distributed Duplicate Detection in Post-Process Data De-duplication

 Atish Kathpal
*
 Matthew John

*
 Gaurav Makkar

Atish.Kathpal@netapp.com tmatthewjohn1988@gmail.com gmakkar@netapp.com
 NetApp Inc. Disney Playdom NetApp Inc.

*Student Authors
Abstract

Data De-duplication is essentially a data compression technique for elimination of coarse-grained redundant data. A

typical flavor of de-duplication detects duplicate data blocks within the storage device and de-duplicates them by

placing pointers rather than storing multiple copies at various places within the disk. Since the advent of de-

duplication the conventional approach has been to scale-up de-duplication at a storage controller by using more of

the controller resources. This approach has led to several bottlenecks including the most evident one of hogging

controller resources, in-turn leading to limiting the number of concurrent de-duplication threads running on the

controller, finally ending up with poor de-duplication performance. Going by the rate at which we are experiencing

data explosion, with data becoming the core entity separating one organization from other, high performing scalable

de-duplication is one challenge organizations are already starting to face. Through the current effort, we propose a

scalable design of a distributed de-duplication system which leverages clusters of commodity nodes to scale-out

suitable tasks of a typical de-duplication system. We explain our distributed duplicate detection workflow,

implemented in Hadoop’s map-reduce programming abstraction. We also discuss the performance statistics we

obtained with the scale-out de-duplication model.

1. Introduction

Data De-duplication is essentially a data

compression technique for elimination of coarse-

grained redundant data. Eliminating redundant data

significantly improves storage and bandwidth

efficiency. Most commercial and research storage

systems deploy de-duplication to improve their storage

utilization. This benefit, however, comes at a cost as de-

duplication processes are both CPU and I/O intensive.

Post-process de-duplication ensures that de-duplication

does not come in way of data influx, as it is carried out

after data has been written to the disks. However, post-

process de-duplication has to suffer due to availability

of limited resources as serving I/O is the major

consideration for storage controllers. This really is a

performance bottle neck, given the uncontrolled

explosion of data in recent years, with storage systems

having made a fast transition from giga to peta-scales.

Once a system reaches its scalability limits, storage

administrators can do little to increase the storage

efficiency.

This work describes a mechanism for

addressing the scalability issues with today’s de-

duplication engine implementations. We show that

there are phases of de-duplication process, which have

inherent concurrency and we leverage Hadoop (a

distributed computing framework) to exploit the same.

Our results show that with four concurrent execution

units (Virtual Machines), we can match the

performance of de-duplication at the controller. This

opens up the opportunity for a much larger number of

simultaneous de-duplication streams besides freeing up

the controller resources for serving IOPs.

1.1 Need for Distributed De-duplication
and Related work

As the data to be managed at organizations

grows to possible exa-scales in coming years, one of the

biggest challenges we are faced with is the aspect of

managing de-duplication of this data. Efforts to address

the scalability issues of de-duplication, so far, have

been in the direction of using multi-threading [1],

various forms of caching [7], file segmentation etc in

pursuit of scaling up the de-duplication performance.

Such implementations lead to dedication of more

controller resources to the de-duplication process which

potentially hits the I/O performance for the controller.

This has the side-effect of artificially limiting the

degree to which one would want to scale the process

because the controller resources are best used for

serving data and with every increment of resources that

we take away from that core goal (for internal

processes, like de-duplication), it has a direct impact to

the number of IOPs we can serve. A common practice

to escape such side-effects is to keep the number of de-

duplication processes running on given storage

controller to a small number to allow keeping the

controller resource utilization under check. Efforts have

also been made in the direction of optimizing the

algorithms in pursuit of improved de-duplication

efficiency and performance, but none of such research

efforts [5, 6] seem to boast of a scalable design and

suffer from same issues of high resource utilization at

the storage controller. There have also been efforts to

perform de-duplication at a higher level (file or object

or variable sized blocks) [8] rather than block level, for

faster results, but they again suffer from scalability

issues in presence of billions of objects. For post-

process de-duplication, it is assumed that the data

center would have “sleep” times when the application

load would be significantly lesser, which is when the

de-duplication tasks are best scheduled, but with data

center’s serving data worldwide, such assumptions are

no longer valid. It’s inevitable for the de-duplication

process to compete with IOPs for resources at the

controller.

We present a scalable distributed de-

duplication design, scales out the de-duplication tasks.

2. Design

In our design, we propose a scalable

enhancement to current de-duplication systems. The

design works best in a clustered storage environment.

De-duplication can be sub-divided into two basic tasks,

that of detecting duplicates and sharing the duplicates

(instead of storing multiple instances of the same

object). Our design advocates to fan-out the compute

and memory intensive, detection of duplicates phase of

de-duplication process, to a cluster of compute nodes

which carry out processing of block fingerprints

(typically a hash of data in the block) and detection of

candidate duplicate blocks in a parallel fashion. The

cluster of compute nodes is constructed using

commodity hardware and is part of the storage-tier.

Leveraging a cluster of commodity nodes allows us to

scale out the said task of de-duplication system. The

duplicate detection phase of post process de-duplication

is entirely based upon identification of duplicates

among the list of collected fingerprints (which are

nothing but computed hash indexes of data chunks in

the storage system). The fingerprints are typically much

smaller in size as compared to the data chunk they

represent. Owing to the much smaller size of fingerprint

database (in comparison to the size of original dataset),

one does not have to move chunks of original dataset

for the purpose of scaling out of duplicate detection

phase. The sharing phase, however, is understandably

best done where the actual data is present as it involves

byte-wise comparison of data chunks, ensuring they are

identical before de-duplicating them. We fan-out the

fingerprint database for a given volume to our compute

cluster for further processing i.e. duplicate detection, as

shown in Fig 1.

2.1. Benefits
As was mentioned in the introduction, it is a

common practice to limit the number of concurrent de-

duplication threads on a controller in pursuit of not

compromising on the core goal of serving I/O

operations. With the aid of proposed design, we can

prevent the critical storage controller resources from

being spent in a workload which can be easily scaled-

out. The other important aspect of this design is that it

allows for leveraging cheaper resources which are not

at the controller, but still are part of the storage tier (by

using commodity hardware). This has an effect of

lowering the overall cost of the solution, while allowing

for higher IOPs to be served through saved resources at

the controller. Another interesting aspect of this design

is that it involves non-shared coarse-grained parallelism

which enables better scalability. Thus with our design,

the number of concurrent de-duplication processes

could be increased by an order of magnitude without

taking additional resources at the controller, by adding

more commodity hardware to the storage cluster.

Fig.1: Distributed de-duplication

3. Implementation
As explained in the design, our intention is to

take the duplicate-detection phase of offline de-

duplication to an external cluster of compute nodes

using commodity hardware. Hadoop, an Apache open

source distributed computing framework serves as a

potential candidate for the task since the duplicate-

detection task is effectively sorting the fingerprints of

the blocks and identifying the duplicates among them.

This is an ideal use case of the Map-Reduce

programming abstraction [2] which is used in Hadoop.

Map-Reduce splits the compute problem into two

stages: Map and Reduce. Map is a transformation

function and Reduce acts as an aggregation function.

Every record in the data is interpreted as a key-value

pair in Map-Reduce programming paradigm.

Storage Controller

Collection of
hashes/finger-

prints of data

Sharing of

duplicate data

objects

Cluster of
commodity

compute nodes

Detection of
duplicate

fingerprints

<input key – value> <intermediate key - value>

<intermediate key – list (value)> <output >

Hadoop Map-Reduce fits very well in our case

since it is distributed and has an inherent sort capability

which sorts all the intermediate data on the basis of the

intermediate key. This stage is called the Shuffle/Sort

phase in Hadoop Map-Reduce. We try to exploit this

feature and detect the duplicate fingerprint records. We

also leverage the use of Hadoop Distributed File

System [9] which acts as the source file system for the

Map-Reduce jobs that are run.

We used NetApp offline de-duplication [3] to

accommodate our Hadoop-based duplicate detection

framework. We replaced the duplicate detection stage

of NetApp de-duplication with our duplicate detection

mechanism that uses Hadoop MapReduce.

The Hadoop-based duplicate detection workflow

that we implemented, includes the following stages:

 Receive the fingerprints from the storage

controller.

 Generate fingerprint database and store it

persistently on the Hadoop Distributed File System

(HDFS). The same can be further used for

incremental offline de-duplication. It also aids in

recovery and serves as a checkpoint, we can

resume de-duplication from the previously saved

fingerprint database, in case the current job of

duplicate detection fails.

 Generate the duplicate records from the

fingerprints and send it back to the storage

controller. This triggers the rest of the de-

duplication phase in the storage controller.

The following section would give finer implementation

details.

3.1 Hadoop-based Duplicate detection
The structures involved in the data flow of

duplicate detection:

Fingerprint:

Duplicate:

The input to our Hadoop cluster is the

fingerprints of all the blocks with no inherent ordering

(Fig. 2). We sort these ingested fingerprints using

Fingerprint as the key. The sorted collection is then

used to detect the duplicates (fingerprints with same

Fingerprint attribute). The duplicate record (shown

above) contains the block attributes of the two blocks

which are going to undergo sharing during de-

duplication. Once we have detected the duplicates using

our map-reduce jobs, send them back as a single

metafile to the storage controller for further duplicate

sharing phase of NetApp de-duplication. Meanwhile we

also preserve a copy of the sorted fingerprints called the

fingerprint database (FPDB) within the Hadoop cluster.

Fig. 2 gives the outline of the MapReduce (MR)

modules we implemented for duplicate detection.

Fig.2: Hadoop based duplicate detection (MR: MapReduce)

We run 2 MapReduce jobs serially to perform

duplicate detection in the Hadoop cluster.

1) FPDBSort

This MapReduce module takes the fingerprints as the

input from the HDFS and generates the Fingerprint

Database (the sorted fingerprint file) and the duplicates

file. The duplicates file generated contains the duplicate

records but not in sorted order. The different parameters

of the module are as stated below:

 Input: Fingerprints – directory from HDFS

which contains the fingerprints.

 Output: FPDB – file which contains the

fingerprints in sorted order.

 Dup_unsorted – file which contains the

duplicate records but not sorted.

Fingerprint Block attributes

Block1 attributes Block2 attributes

Map

Reduce

Fingerprints (Obtained from
storage controller)

Fingerprint Database
(Stored in HDFS)

Duplicates

(unsorted)

Duplicates (Sorted)

(Sent back to storage

controller for de-duplication)

DupSort
(MR module)

FPDBSort
(MR module)

Fig. 3: Map-Reduce algorithm of FPDBSort

2) DupSort

This MapReduce module takes “Dup_unsorted” file

from HDFS, sorts the duplicate record with a specific

comparator and writes the output to an output stream

that sends the data to the Storage controller via Socket

communication. The different parameters of the module

are as stated below.

 Input: “Dup_unsorted” file from HDFS

 Output: Sorted duplicates sent over the socket

to the Storage controller.

Fig.4: Map-Reduce algorithm of DupSort

4. Performance
As mentioned previously, we implemented the

Hadoop based scale out duplicate detection by

modifying the offline de-duplication of NetApp. We

present the performance comparisons made between the

duplicate detection of NetApp de-duplication and

duplicate detection using our Hadoop MapReduce

framework. The size of fingerprint data-structure in our

experiment is 32 bytes corresponding to a 4 KB data

block.

Following are the datasets used for the de-duplication

experiments:

 Dataset A – 498 GB (78% duplicates)

 Dataset B – 445 GB (67% duplicates)

 Dataset C – 217 GB (86% duplicates)

 Dataset D – 197 GB (53% duplicates)

We populated the datasets using Iozone Filesystem

Benchmark tool [4]. We setup the Hadoop cluster on an

ESX Hypervisor with four dedicated 32-bit virtual

machines taking up the role of the Hadoop nodes. The

configuration of each of the nodes is as given below:

Number of CPUs: 2

Memory: 4 GB

Operating system: Ubuntu 10.04

Duplicate detection phase of NetApp de-duplication

was carried out in a NetApp Storage controller. The

configuration of the controller we used, is as mentioned

below:

Number of CPUs: 4

Memory: 16 GB

NVRam: 2 GB

Operating system: Data ONTAP

We recorded the time taken during the

duplicate detection of NetApp de-duplication and

distributed duplicate detection using Hadoop

MapReduce (including the time taken for network

transfer of metadata from controller to the Hadoop

cluster and back.) with different Hadoop cluster sizes.

Table 1 gives the performance statistics we observed

during the experiments. The results described in Table

1 are the time taken by the de-duplication process,

starting from the fingerprint collection stage, until the

end of detection of duplicates. Note that our Hadoop

implementation optimizes only the duplicate detection

phase.

In-order to simulate a realistic workload

environment in the controller, we ran de-duplication

along with a simulated workload where six threads

were assigned to perform read/writes of 1GB data each

on the controller. We measured the controller

performance with and without the simulated workload.

The performance results (Fig 5) clearly indicate that our

distributed duplicate detection framework (with four

commodity/VM nodes) out-performs the standard

duplicate detection implemented in controllers, under

the effect of simulated workloads. As the magnitude of

data increases, the Hadoop framework is expected to

perform efficiently since it is tailor-made for big data

processing with reliability. We also observed that

scale-out duplicate detection freed up approximately

512MB of memory while running de-duplication on a

single volume. Fig. 5 gives a bar-graph representation

of the statistics obtained.

5. Conclusion and Future Work
As it is evident from the performance results

obtained from our experiment, Hadoop-based

distributed duplicate detection is a good enhancement

to the single node duplicate detection run on storage

controllers. It outperforms standard offline de-

Map (byte [] fingerprint_record)

For each fingerprint_record

Emit (key, value);

//key – Fingerprint of block

//value – Block attributes

Reduce (byte [] key, Iterator <byte []> Values)

1) For every value in values, emit (key, value)

// this gives the FPDB file

2) For every consecutive values, value_i and

value_j

Emit (value_i, value_j)

//this populates the Dup_unsorted file

Map (byte [] duplicate_record)

For each duplicate_ record

Emit (key, value);

//key – duplicate_record

//value – NULL

Reduce (byte [] key, Iterator <byte []> Values)

For every value in Values, emit (key, value)

// Output is sent back to controller via socket

duplication mechanism due to its scale-out capability. It

also appears to be a good use case of leveraging

commodity hardware in the present data storage

scenario. Another positive that can be derived from this

initiative would be to free the storage controller

resources that could be utilized for other higher priority

housekeeping functionalities and serve the main

purpose of data storage more effectively. The same set

of Hadoop nodes, can also be used to run other suitable

applications like management and the like, which is

beyond the scope of this paper.

Going ahead, we plan to work on the lines of

increasing the number of concurrent de-duplication

streams that could be initiated by the storage controller

and try to address the bottlenecks we encounter in this

context. We also intend to investigate on how to

achieve end-to-end scale-up in the rate of overall de-

duplication in this scenario. We are also interested in

evaluating the results using a practically larger Hadoop

cluster and huge datasets that could be an indicator of

the storage scenario in the years to come. Another

future work prospect would be on the lines of assessing

how to scale-out other stages of the de-duplication

using commodity hardware – fingerprint (hash value of

the data blocks) generation and even data processing

modules involved in duplicate sharing phase of de-

duplication. We would also like to explore if the

memory at the commodity Hadoop nodes, could be

utilized as a layer of secondary cache for the controller

when some of the nodes are idle.

Dataset Duplicate

detection

on Storage

controller
(without

workload)

(min)

Duplicate
detection on

Storage

controller
(with

workload)

(min)

Duplicate
detection

on 2-

node/VM
Hadoop

Cluster

(min)

Duplicate
detection

on 4-

node/VM
Hadoop

Cluster

(min)

A 29 35 38 30

B 28 32 36 23

C 14 21 20 14

D 13 19 15 10

Table 1: Total time taken during fingerprint collection and duplicate

detection stages, with and without the Hadoop implementation

6. Acknowledgements
We would like to acknowledge the key inputs

from VR Bharadwaj on modifying NetApp A-SIS for

us to carry out our experiments. We thank members of

NetApp Advanced Technology Group for their

guidance. We would also like to thank the Apache

Hadoop users community for their timely tips and help.

Fig.5. Bar-graph indicating the performance results

6. References

[1] Petros Efstathopoulos and Fanglu Guo.

Rethinking Deduplication Scalability.

HotStorage 2010.

[2] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

Simplified Data Processing on Large Clusters.

OSDI 2004.

[3] Carloz Alvarez. NetApp Technical Report:

NetApp Deduplication for FAS and V-Series

Deployment and Implementation Guide.
[4] William D. Norcott and Don Capps. Iozone

Filesystem Benchmark. http://www.iozone.org.

[5] Sean Quinlan and Sean Dorward, “Venti: A new

approach to archival storage,” in FAST ’02:

Proceedings of the Conference on File and

Storage Technologies, Berkeley, CA, USA, 2002,

pp. 89–101, USENIX Association.

[6] OpenDedup, “A userspace deduplication file

system (SDFS),” March 2010,

http://code.google.com/p/opendedup/.
[7] ZHU, B., LI, K., AND PATTERSON, H.

Avoiding the disk bottleneck in the Data Domain

deduplication file system. In File and Storage

Technology Conference (2008).

[8] Shai Halevi, Danny Harnik, Benny Pinkas, and

Alexandra Shulman-Peleg. Proofs of Ownership

in Remote Storage Systems. CCS 2011

[9] Konstantin Shvachko, Hairong Kuang, Sanjay

Radia, Robert Chansler. The Hadoop Distributed

File System. MSST2010

X-axis: Datasets

Y-axis: Time (mins)

