
Parallelization of Velvet,“a de novo genome
sequence assembler”

Nitin Joshi§†∗, Shashank Shekhar Srivastava§†∗,
M. Milner Kumar†, Jojumon Kavalan†, Shrirang K. Karandikar†and Arundhati Saraph†

§Department of Computer Science and Technology Goa University, Goa
†Computational Research Laboratories, Tata Sons Ltd. Pune

Abstract—Genome assembly is one of the most complex
and computationally intensive tasks of genome sequence
analysis. There are various parallel and serial tools avail-
able for genome assembly. Some parallel tools require as
much as 2 days to assemble human genome. Serial tools are
incapable of achieving this milestone even on a powerful
machine with 256 GB of memory. Velvet is one such serial
tool which requires 14 GB of memory even for a small
bacteria genome, therefore memory is a major limitation of
Velvet. In this paper we present our work on parallelization
of VelvetH (the primer part of Velvet). As a demonstration
of the capability of our parallel-VelvetH, we hashed the
human genome in as low as 1 hour 30 minutes.

I. INTRODUCTION

De novo assembly [1] is the process of reconstructing
the genome of organisms not sequenced before or for
which a reference comparative genome is unavailable. It
is accomplished through the shotgun process where the
genome of the organism is sheared into small fragments,
each of which is sequenced separately and reconstructed
using computational tools. This process is complex be-
cause genomes contain segments of identical sequences
namely repeats. The length of the repeats varies very
much and makes it impossible to recover the complete
genome. Therefore, almost all de novo tools do not
recover the complete genome. However, they report long
segments of genome known as contigs. Furthermore, the
complexity increases with the size of the genome.

There are primarily two categories in de novo genome
assembling process namely Overlap Layout and Con-
sensus (OLC) and De Bruijn graph based methods OLC
based methods are computationally more expensive than
De Bruijn graph based methods, whereas the latter are
memory intensive. There are several tools available [2]–
[4] based on De Bruijn graph. Velvet [5] is also based on
De Bruijn graph approach, which is widely used. In this
paper we present our work on parallelization of VelvetH,
the module (which does the hashing of reads) of open
source tool Velvet.

∗ Student Author

A. Motivation and problem definition

Even today, very few centers have the resources, in
terms of both software and hardware, to assemble a
genome. Most short read assemblers are single threaded
applications, designed to run on a single processor.
Velvet is one such widely used serial tool. However,
the practical use of these assemblers are limited for
large genomes due to computation time and memory
constraints. One of the bottlenecks for practical assembly
of short reads is the huge memory requirement in order
to process repetitive fragments from large genomes.
Another big challenge for the assembly of short reads
is the intensive computational time requirement.

To decrease the time cost of the assembly procedure,
threaded parallelization is implemented in a few assem-
blers. While this approach addresses the large run time
required, the memory footprints is not resolved. In this
paper we present our work on parallelizing VelvetH on
a distributed memory architecture. This allows us to run
VelvetH on a cluster of nodes in parallel. We obtain the
benefit of run time speedup, and our approach ensures
that the memory usages on an individual node is within
reasonable limits.

B. Previous work on parallelization of sequence assem-
bler tools

Several previous work has been done either to develop
parallel sequence assembly tools or to parallelize existing
serial sequence assemblers. One existing tool, SOAPden-
ovo [3] supports multithreaded parallel computing. The
latest version of Velvet (version1.1.03) also supports
multithreaded parallel computing. As mentioned before,
these multithreaded tools address only the run time
issue. Since the memory space is shared, their operation
requires computers with large memory such as 256 GB
RAM, thereby rendering their approach infeasible for
large genomes. ABySS [4] is also a sequence assembler
that is designed for short reads, whose parallel version
is implemented using Message Passing Interface (MPI)
and is capable of assembling larger genomes. However,
genome assembly using ABySS on the human genome
still required 15 hours to generate contigs [4].

II. ARCHITECTURE OF VELVET

Velvet has two parts, VelvetH for hashing and VelvetG
for graph generation. VelvetH produces a hash-table of
which two files namely Sequences and Roadmaps are the
output and function as input to VelvetG. VelvetG creates
a directed graph and generates the unique segments of
chromosomes as output.

In this section, we describe the computational aspects
of VelvetH, which is of interest from a parallelization
perspective. The interested reader is referred to [5] for
an exposition on the theory of genome assembly. We
also highlight the dependencies between different com-
putational steps, which makes parallelization difficult.

A. Working of VelvetH–serial

A read is a sequence of 4 letters, A, C, G, T which
represent the four basic molecules (called nucleotides
or bases) that composes the DNA. Every read can be
of length between 25 − 100 characters. All possible
sub-strings of length k of this read, termed k-mers, are
generated and stored in a hash-table.

An example of a read of length 6 and k-mers for k =
4 is shown in Figure 1. The value of k can be chosen
by the user.

read = ATGCTT
kmers = {ATGC,
 TGCT,
 GCTT}

Fig. 1. All possible k-mers for k = 4 from read of length 6.

VelvetH starts by processing various input files, which
have millions of reads. While processing input files,
VelvetH scans these reads and converts them to an
internal format. The converted reads are written to a
file called Sequences. k-mers are generated from reads.
VelvetH maintains a hash-table with n entries and checks
for the presence of a k-mer in this hash-table. If present,
it stores a reference of that entry in the Roadmaps file. If
not, the k-mer is inserted into the hash-table. The hash-
table and Roadmaps are used by VelvetG to assemble
the complete genome. Figure 2 shows the insertion of
k-mers into hash-table.

B. Challenges involved in parallelization of VelvetH

Most of the time (60%) and memory of VelvetH is
spent during insertion of k-mers into the hash-table. Each
k-mer is inserted sequentially into the hash-table. This
process can be expedited by inserting k-mers simulta-
neously into the hash-table. However, this approach has
two problems. First, if the same k-mer is encountered
(as in k2 of Read I and k1 of Read II in the example
in Figure 2), we have a race condition, which enforces

sequentiality - the 1st k-mer has to be inserted in the
hash-table and the 2nd in the Roadmaps file. Second,
if two k-mers hash to the same entry, once again we
have to add them sequentially, else the state of the data
structure can get destroyed.

Hash-Table

0 -

1 - ATGC

2 -

3 - TGCT

4 -

5 - GCTT

6 -

read
I
 ATGCTT

k
1
 ATGC

k
2
 TGCT

k
3
 GCTT

Insert

read
II
 TGCTTA

k
1
 TGCT

k
2
 GCTT

k
3
 CTTA

Hash-Table

0 -

1 - ATGC

2 -

3 - TGCT

4 -

5 - GCTT

6 - CTTA

RoadMaps

read
#

k
#

Index
#

2 1 3

2 2 5

RoadMaps

read
#

k
#

Index
#

Read - I

Read - II

Insert

Insert

Already
present

Insert

Already
present

Reference

Reference

Fig. 2. Serial-VelvetH: Insertion of k-mers into hash-table. Read
I - ATGCTT generates three k-mers (k1, k2, k3), since this is the
first occurrence of these k-mers, these are inserted into hash-table
sequentially. Then Read II - TGCTTA generates three k-mers (k1, k2,
k3). k1 and k2 are already present in the hash-table, so a reference of
these k-mers is stored in the Roadmaps. k3 is inserted into hash-table.

Both the above issues can be resolved using a lock-
ing mechanism. However, this creates sequentiality, and
reduces the potential speedup. Also, the memory prob-
lem is unresolved. In the next section, we present our
solution, which deliver a speedup as well as reduces the
memory requirements on individual rank(a MPI process).

III. OUR APPROACH TO PARALLELIZATION OF
VELVETH

Processing input files and converting data to the in-
ternal format takes about 40% of the run time, and can
easily be done in parallel, since there are no dependen-
cies. All files are evenly distributed across ranks, that
independently carryout the data conversion.

In order to address the run time and memory issue
with the rest of VelvetH, we process as follows. The
hash-table, which has n entries, is distributed among
ranks, so that the first rank owns the first n/r entries,
the second the next n/r entries and so forth. Since the
input data is processed in parallel, each rank already has
the data it has to analyze. For each read, all k-mers are
generated and the hash-keys for each k-mer immediately
tells us which part of the hash-table this k-mer is to
be inserted into (or checked if a prior identical k-mer
has been encountered before). This can be mapped to
the corresponding rank, which owns that portion of the
hash-table. If the index of the k-mer, being processed by

rank r1, falls in the range of the hash-table that is owned
by rank r1, then processing is straight forward. If not,
then a communication is initiated with the rank, say r2,
that owns the section of the hash-table of interest. Rank
r2 can then either insert the k-mer into the hash-table or
determine that this had been inserted before, and extract
the necessary reference information and store it in the
Roadmaps file. As can be easily seen, as the number
of ranks increases, this approach becomes infeasible,
since the communication overheads increases drastically.
For 2 ranks, about half the k-mer that a rank analyzes
are processed locally and half are communicated. This
fraction drops to 1/n for n ranks, and becomes no
better than sequential processing. However, the memory
problem has been addressed. Each rank can run on a
separate node of a cluster (for r ranks), and requires 1/r
of the memory, since the hash-table and its associated
data is now distributed across r ranks.

Rank 0

Rank 0's
Hash-Table

Local
Data

Chunk n

read
1

read
2

read
3

} Chunk 1

} Chunk 2
.
:

k-mer
1

k-mer
2

k-mer
3

Key/index

Key/index

Key/index

Bucket
for rank 2

. . .Bucket
for rank 1

Bucket for
rank r-1

Exchanged with ranks 1, 2 r -1
after chunk has been processed.

0

n/r

Fig. 3. Parallel-VelvetH: Insertion of k-mers into distributed hash-
table.

We now address the speedup issues. The approach
presented above is highly communication intensive. In
addition, ranks spend more time communicating with
each other rather than processing data. We overcome
this limitation as follows. We define a chunk as a certain
number of k-mers. Each rank process this number of k-
mers. Every rank also maintains buckets for every other
rank as in Figure 3. If a k-mer on rank i has to be
sent to a different rank, say rank j, it is put into rank
j’s bucket. After processing all the k-mers in a chunk,
rank i will have processed its own k-mers in the usual
manner and will have r−1 buckets of k-mers that belong
to other ranks. This is true for all ranks. We then do
an all-to-all communication, where data is exchanged
and the communicated k-mers can now be processed
locally. We note that while the all-to-all communication
is being carried out, processing of the next chunk can
begin. In this manner, we separate out the issue with

simultaneous insertion of k-mers into the hash-table
(even in the case of collision) and communication and
synchronization needed between ranks. This approach
provides the expected speedup when concurrency is
being put to use. As mentioned before, since the hash-
table and associated data is distributed across ranks, we
address the memory problem as well.

The size of a chunk is a parameter that can be adjusted,
and it can have a significant impact on performance. A
chunk size of 1 is no different than our initial approach
presented previously. Setting the chunk size to the largest
value, which would be number of k-mers that a rank has
to process would not deliver the benefits of parallelism,
and raises another serious problem - in worst case, all k-
mers would be sent to another single rank, which means
we need to allocate buckets of size k, thereby leading to
large memory requirements.

For intermediate values of chunk size, performance
is obtained by achieving a balance between how much
communication there is in absolute terms, how much of
this communication can be overlapped with the com-
putation of the next chunk, the memory overhead of
maintaining multiple buckets per rank, and the number
of k-mers that are eventually processed locally, versus
the number that are sent for processing to and from other
ranks. We present some experiments with chunk size and
its impact on performance in the following section.

IV. RESULTS AND DISCUSSION

In this section we present performance results of both,
serial VelvetH and parallel-VelvetH on EKA(CRL’s pub-
lic cloud facility), a 1800 node infiniband cluster. Each
node is equipped with 16 GiB RAM and with dual quad
core Intel Xeon processors. Every node is connected to
each other with the central storage(80 TB) through a 20
gigabit Infiniband network. We ran our experiments with
a pre-released version of Velvet 1.0.19 for serial VelvetH
and for our parallel VelvetH we used hp-MPI(mpirun:
HP MPI 02.02.05.01 Linux x86-64 major version 202
minor version 5).

In order to test for correctness and measure benefits
of parallel-VelvetH with respect to serial VelvetH, we
selected three genomes - Bacteria, Yeast, Worm. The
sizes of the genome and those of the input data are as
shown in Table I. Note that the input data of Bacteria is
much higher than the size of genome would suggest.
This is because the coverage of the genome in this
data set is higher than the other two. The run time and
memory requirements of serial VelvetH on these input is
a function of both the genome size and input data size.
The last two columns of Table I show the run time and
memory when serial VelvetH is used to process these
three genomes.

TABLE I
SERIAL-VELVETH: STATISTICS FOR RUN TIME AND MAXIMUM
MEMORY OCCUPANCY OF 36 LENGTH SHORT READS ASSEMBLY
PROCEDURE. *SERIAL VELVETH CANNOT HANDLE THIS INPUT.

Genome Size Of Size Of No. Of TimeMemory
Genome(MB)Input(MB) reads (sec) (MB)

Yeast 16 5000 0.27× 108 244 3925
Bacteria 4 6600 0.35× 108 295 14443

Worm 80 8000 1.15× 1081183 15047
Human 3300 239000 20.2× 108 ∗ ∗

As can be seen in Table I, the time and memory
requirement grows exponentially for these genomes. The
human genome is approximately 40 times larger than
Worm, and the corresponding input data is 30 times
larger. Of course, running this on a machine with 16
GB of memory is infeasible. We tried processing parts
of input data on a computer with 256 GB of memory
(Table II). We were able to process upto 900 million
reads at the most− with 1 billion reads, the program ran
out of memory. Extrapolating this data, we estimate that
for 2.02 billion reads, serial VelvetH would take 500 GB
of memory and 2 days to complete.

TABLE II
SERIAL-VELVETH: STATISTICS OF RUN TIME AND MAXIMUM

MEMORY OCCUPANCY OF 36 LENGTH SHORT READS ON PARTS OF
HUMAN GENOME PERFORMED ON A MACHINE WITH 256 GB OF
MEMORY. *SERIAL VELVETH COULD NOT HANDLE THIS INPUT.

Number Of Reads (Billions) Time Memory (GB)

0.3 5hr11min 65.6

0.6 10hr21min 124

0.9 16hr43min 166

1 * *

In the remainder of this section, we present the results
of parallel-VelvetH run on the Bacteria, Yeast, Worm
genomes, followed by the results on the human genome
and finally an analysis of the performance and approach
towards tuning the same.

A. Experiments with smaller genomes

Figure 4 and 5 present the speedup and memory im-
provement that is obtained by running parallel-VelvetH
on the small genomes for different number of ranks. With
the exception of 2 ranks, significant improvement with
respect to memory requirement per rank and speed was
achieved with parallel-VelvetH.

The poor performance for 2 ranks is due to communi-
cation overhead. This is discussed in details towards the
end of this section. Note that the total memory used by
all ranks in a parallel-VelvetH run is actually greater than
that used by serial VelvetH, due to the book keeping and
communication buffer overheads. However, this is not an
issue as each rank individually can be run on a computer
with a reasonable amount of memory.

0 5 10 15 20 25 30 35
Number of ranks

0

200

400

600

800

1000

1200

T
im

e
(S

ec
o

n
d

s)

Worm
Yeast
Bacteria

Fig. 4. VelvetH: Run time of 36 length short reads assembly procedure
for different data sets. On x-axis data points are drawn at 1 for serial
VelvetH and at 2, 4, 8, 16 and 32 ranks for parallel-VelvetH.

0 5 10 15 20 25 30 35
Number of ranks

0

2

4

6

8

10

12

14

16

M
em

o
ry

(G
B

)

Worm
Yeast
Bacteria

Fig. 5. VelvetH: Maximum memory occupancy of 36 length short reads
assembly procedure for different data sets. On x-axis data points are
drawn at 1 for serial VelvetH and at 2, 4, 8, 16 and 32 for parallel-
VelvetH.

B. Experiment for human genome

We have used parallel-VelvetH to process the human
genome starting with 128 ranks and going all the way
to 512 ranks. The run times vary from 2 hours to 1.5
hours respectively. This is the key contribution of this
work. We can process the human genome in a couple
of hours, rather than the previous couple of days. This
brings the heuristic “instant decoding of an individual
genome” closer to reality.

C. Analysis of run times

In this section, we experimented with the chunk size,
described in section III to get better performance. we
also decompose the run time of parallel-VelvetH to
understand its behavior.

1) Experiment for optimal Chunk Size: As described
earlier, parallel-VelvetH splits input data to be processed
at each rank into chunks. The size of a chunk can vary
from 1 (minimum) to the entire input data set being
processed by that rank (maximum). An intermediate
values of chunk size balances computational and parallel
efficiency with communication and memory overheads.
There are many parameters that can influence the impact
of chunk size on performance, and we are in the process
of developing an analytical model for the same.

0 5 10 15 20 25 30 35
Number of ranks

0

200

400

600

800

1000

T
im

e
(S

ec
)

chunk size 300
chunk size 900
chunk size 3000
chunk size 5000
chunk size 10000

Fig. 6. Parallel-VelvetH: Chunk size experiment for Worm. On x-axis
data points are drawn at 2, 4, 8, 16 & 32 ranks

In our experiments, we tried various chunk sizes, to
determine the optimal value. The results of this are
shown in Figure 6. For a given number of ranks, say
16, the run time with chunk sizes of 300 − 10000 can
vary by 4 times. For most ranks, a chunk size of 900 is
the optimal. This means that each rank process 900 reads
at a time, adding these to either its internal processing
queue or to other rank’s buckets for communication. A
smaller chunk size results in more communication time
while a longer size needs more memory and does not
have much run time benefit.

2) Communication and computation among ranks:
Figure 7 breaks out the time spent by parallel-VelvetH
when processing Worm into two components− the time
spent during processing and that spent for communica-
tion, for different ranks. As it is obvious that the compu-
tation time reduces as the number of ranks increase. This
is expected, since the amount of data being processed by
each rank is 1/r the total data, when ’r’ ranks are being
used. The communication time is roughly constant across
different ranks. The implication of this is the cross-over
point at 16 ranks, after which every rank is spending
more time in communication than in computation but
still the total time is getting reduced. This inhibits the
speedups that can be obtained by increasing the number
of ranks.

0 5 10 15 20 25 30 35
Number of ranks

0

100

200

300

400

500

600

700

800

900

T
im

e
(S

ec
)

Communication Time
Computation Time

Fig. 7. Parallel-VelvetH: Communication and Computation for Worm.

V. CONCLUSIONS AND FUTURE WORK

Genome sequencing technology has grown at an out-
standing rate over the past few years. However, while
the technology to generate short reads has progressed,
assembling these reads to produce the complete genome
is a bottle neck in de novo sequencing. The work pre-
sented in this paper is a major step forward towards near-
real time genome assembly on commodity hardware.
We have demonstrated significant speedups over the
sequential version for smaller genomes (Bacteria, Yeast,
Worm), and the human genome was processed in 1 hour
30 minutes on a small cluster.

While this requires 128 − 512 ranks, the cost of this
cluster is much less than the cost of High Throughput Se-
quencing Machine. An equivalent single computer with
terabytes of memory would be prohibitively expensive
thus, this work is a quantum leap towards near real time
genome sequencing.

Most computers today have multiple cores. We are
also working on a hybrid model of using threads on
a compute node with our MPI based approach across
nodes in order to obtain greater speedups.

REFERENCES

[1] Genome sequence assembly primer [http://www.cbcb.umd.edu/
research/assembly primer.shtml].

[2] Jonathan Butler, Iain MacCallum, Michael Kleber, Ilya A
Shlyakhter, Matthew K Belmonte, Eric S Lander, Chad Nusbaum,
and David B Jaffe. Allpaths: de novo assembly of whole-genome
shotgun microreads. Genome Res, 18(5):810–20, May 2008.

[3] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong
Fang, Zhongbin Shi, Yingrui Li, Shengting Li, Gao Shan, Karsten
Kristiansen, Songgang Li, Huanming Yang, Jian Wang, and Jun
Wang. De novo assembly of human genomes with massively par-
allel short read sequencing. Genome Res, 20(2):265–72, February
2010.

[4] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E
Schein, Steven J M Jones, and InanÃ Birol. Abyss: a parallel
assembler for short read sequence data. Genome Res, 19(6):1117–
23, June 2009.

[5] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de
novo short read assembly using de bruijn graphs. Genome Res,
18(5):821–9, May 2008.

