
Exascale Computing: The Last Rehearsal 
Before the Post-Moore Era 

Marc Snir 

January 10, 2011 



THE WORLD IS ENDING 
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THE (CMOS) WORLD IS ENDING 

So says the International Technology Roadmap 
for Semiconductors (ITRS) 
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ITRS Roadmap 
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The International 
Technology Roadmap for 
Semiconductors is 
sponsored by the five 
leading chip 
manufacturing regions in 
the world: Europe, Japan, 
Korea, Taiwan, and the 
United States. 
www.itrs.net 



End of CMOS? 

IN THE LONG TERM (~2017 THROUGH 2024) 
While power consumption is an urgent 
challenge, its leakage or static component will 
become a major industry crisis in the long 
term, threatening the survival of CMOS 
technology itself, just as bipolar technology 
was threatened and eventually disposed of 
decades ago.  [ITRS 2009] 

 
•  Unlike the situation at the end of the bipolar era, 

no technology is waiting in the wings. 



“POST-CONVENTIONAL CMOS” 
•  New materials 

•   .. such as III-V or germanium thin channels on silicon, or even 
semiconductor nanowires, carbon nanotubes, graphene or others may be 
needed.  

•  New structures 
•  three-dimensional architecture, such as vertically stackable cell arrays in 

monolithic integration, with acceptable yield and performance. 
•  ROI challenges 

•  … achieving constant/improved ratio of … cost to throughput might be an 
insoluble dilemma.  

•  …These are huge industry challenges to simply imagine and define 
•    

•  Note: feature size in 2021 (13 nm) = ~55 silicon atoms (Si-Si lattice 
distance is 0.235 nm) 



The Post-Moore Era 

•  Scaling is ending 
•  Voltage scaling ended in 2004 (leakage current) 
•  Scaling rate will slow down in the next few years 
•  Feature scaling will end in 202x (not enough atoms) 
•  Scaling may end much earlier, because of technological 

or economic barriers 
•  Continued scaling in the next decade will need a sequence 

of (small) miracles (new materials, new structures, new 
manufacturing technologies) 

•  Scaling ends, when doubling performance means doubling 
cost 



Rock’s Law 

•  Cost of semiconductor chip fabrication plant 
doubles every four years 

•  Current cost is $7-$9B 
•  Intel’s yearly revenue is $35B 

•  Memory cost has not decreased in the last few 
years 
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IT After the End of Scaling (1) 

•  IT industry changes in fundamental ways 
•  Market is  driven at the top by function and fashion 

– not performance 
•  All increases in hardware performance are driven 

by multicore parallelism in the next few years 
•  It’s a slow slog for improved compute efficiency, 

afterwards 
•  Computer Architecture and System Design 

become true engineering disciplines (the end of 
superficiality) 
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Compute Efficiency 

•  Progressively more efficient use of a fixed set of 
resources (similar to fuel efficiency) 

•  More computations per joule 
•  More computations per transistor 

•  A clear understanding of where performance is 
wasted and continuous progress to reduce 
“waste”. 

•  A clear understanding of inherent limitations of 
computations – to distinguish “waste”, “overhead” 
from “needed” 

 
 

10 



HPC – The Canary in the Mine 

•  HPC is already heavily constrained by low 
compute efficiency  
•  High power consumption is at the limit of current 

machine rooms: a future exascale system may 
require > 300MW. 

•  Low thread performance entails high levels of 
parallelism: a future exascale system may need ~ 
1B threads. 

•  Higher compute efficiency is essential for 
exascale computing 
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PETASCALE TODAY 
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PETASCALE IN A YEAR 

Blue Waters 
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(Soon to be) Current Petascale Platforms: 
Blue Waters 

•  System Attribute   Blue Waters 
•  Vendor   IBM 
•  Processor   IBM Power7 
•  Peak Performance (PF)    ~10 
•  Sustained Performance (PF)   ~1 
•  Number of Cores/Chip   8 
•  Number of Cores   >300,000 
•  Amount of Memory (PB)   ~1 
•  Amount of Disk Storage (PB)   ~18 
•  Amount of Archival Storage (PB)   >500 
•  External Bandwidth (Gbps)   100-400 
•  Water Cooled   >10 MW 
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Sidebar: Cooling in the Bipolar Era 

•  All large bipolar systems were water cooled 
•  High-performance supercomputers used immersive cooling 

(fluorinert, liquid nitrogen) 
•  A Cray 1 used 115 KW power 
•  Same evolution (high power density, aggressive cooling) 

happening now with CMOS 
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Blue Waters is not “Out-of-the-Box” Product 

•  Work on power-efficient compute center 
•  Work on integration of Blue Waters in production 

environment 
•  Storage, Networking, Workflow, Training… 

•  Collaborations with IBM and other partners on 
enhancements to essentially all software layers 
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Illinois Petascale Computing Facility 

18 

PCF is Near 
University  
Power and 
Cooling  
Infrastructure 

Cooling  
Towers 



Full – featured OS 
Sockets, threads, 
shared memory, 

checkpoint/restart 

Languages: C/C++, Fortran (77-2008 
including CAF), UPC 

IO Model: 
Global, Parallel 

shared file 
system (>10 PB) 

and archival 
storage 

(GPFS/HPSS) 
MPI I/O 

Libraries: MASS, ESSL, PESSL, PETSc, visualization… 

Programming Models: MPI/MP2, OpenMP, 
PGAS, Charm++, Cactus 

Hardware 
Multicore POWER7 processor with Simultaneous MultiThreading (SMT) and Vector 

MultiMedia Extensions 
Private L1, L2 cache per core, shared L3 cache per chip 

High-Performance, low-latency interconnect supporting RDMA 

Environment: Traditional (command line), Eclipse 
IDE (application development, debugging, 

performance tuning, job and workflow management) 

Low-level communications API supporting 
active messages (LAPI) 
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Molecular Dynamics 

Lattice QCD 

Galaxy Formation 

quantum chemistry 

Contagion simulation 
Turbulence 

Quantum Monte Carlo 

Tornados 
Earthquakes 

Climate 

Multiscale Biology 

Star Evolution 



EXASCALE TOMORROW 

21 Petascale, Exascale and Post-Moore 



Exascale in 2018 at 20 MWatts (?) 
•  It’s very hard [Kogge’s report] 

•  Conventional designs plateau at 100 PF (peak) – all 
energy is used to move data 

•  Aggressive design is at 70 MW and is very hard to use 
•  600M instruction/cycle 
•  0.0036 Byte/flop 
•  No ECC, no redundancy 
•  No caching (addressable workpad) 
•  HW failure every 35 minutes 
•  … 

•  Waiting 3-4 years does not solve the problem 
•  Exascale in CMOS requires revolutionary advances 

in compute efficiency  
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Increasing Compute Efficiency (Software) 

•  Resiliency 
•  Communication-optimal computations 
•  Low entropy computations 
•  Jitter-resilient computation 
•  Steady-state computations 
•  Friction-less software layering 
•  Self-organizing computations 
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Resiliency 

•  HW for fault correction (and possibly fault detection) 
may be too expensive (consumes too much power) 
•  and is source of jitter 

•  Current global checkpoint/restart algorithms cannot 
cope with MTBF of few hours or less 

•  Need SW (language, compiler, runtime) support for 
error compartmentalization 
•  Catch error before it propagates 

•  May need fault-tolerant algorithms 
•  Need new complexity theory 
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Communication-Efficient Algorithms 

•  Communication in time (memory) and space (buses, links) is, by far, 
the major source of energy consumption 

•  Our understanding of inherent communication needs of algorithms 
and communication-efficient algorithm design is very limited (FFT, 
dense linear algebra)   

•  Current characterization of communication patterns is very 
incomplete 
•  Spatial-temporal locality 
•  Communication topology 
•  Communication dynamics 

•  Need:  
•  Better theory of communication complexity 
•  Better benchmarks 
•  Better metrics 
•  Communication-focused programming models (Higher level than MPI, but 

not hiding communication) 
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Low-Entropy Communication 

•  Communication can be much cheaper if “known 
in advance” 
•  Latency hiding, reduced arbitration cost, bulk 

transfers (e.g., optical switches) 
•  … Bulk mail vs. express mail 

•  Current HW/SW architectures take little 
advantage of such knowledge 
•  Need architecture/system research 

•  CS is lacking a good algorithmic theory of entropy 
•  Need theory, benchmarks, metrics 
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Jitter-Resilient Computation 
•  Expect increased variance in the compute speed of 

different components in a large machine 
•  Power management 
•  Error correction 
•  Asynchronous system activities 
•  Variance in application 

•  Need variance-tolerant applications 
•  Bad: frequent barriers, frequent reductions 
•  Good: 2-phase collectives, double-buffering 

•   Need theory and metrics 
•  Need new variance-tolerant algorithms 
•   Need automatic transformations for increased variance 

tolerance 
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Steady-State Computation 
•  Each subsystem of a large system (CPU, memory, 

interconnect, disk) has low average utilization during a long 
computation 

•  Each subsystem is the performance bottleneck during part of 
the computation. 

•  Utilization is not steady-state – hence need to over-provision 
each subsystem. 

•  Proposed solution A: power management, to reduce subsystem 
consumption when not on critical path. 
•  Hard (in theory and in practice) 

•  Proposed solution B: Techniques for steady-state computation 
•  E.g., communication/computation overlap 

•  Need research in Software (programming models, compilers, 
run-time), and architecture. 
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Friction-less Software Layering 
•  Current HW/SW architectures have developed 

multiple, rigid levels of abstraction (ISA, VM, APIs, 
languages…) 
•  Facilitates SW development but energy is lost at layer 

matching 
•  Flexible matching enables to regain lost performance   

•  Inlining, on-line compilation, code morphing 
(Transmeta) 

•  Similar techniques are needed for OS layers 
•  Increased customization becomes possible in the 

post-Moore era. 
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Self-Organizing Computations 

•  Hardware continuously changes (failures, power 
management) 

•  Algorithms have more dynamic behavior 
(multigrid, multiscale – adapt to evolution of 
simulated system) 
☛ Mapping of computation to HW needs to be 

continuously adjusted 
•  Too hard to do in a centralized manner -> Need 

distributed, hill climbing algorithms 
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Summary 

•  The end of Moore’s era will change in 
fundamental ways the IT industry and CS 
research 
•   A much stronger emphasis on compute efficiency 
•  A more systematic and rigorous study of sources 

of inefficiencies  
•  The quest for exascale at reasonable power 

budget is the first move into this new domain 
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BACKUP 
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Power7 Chip:  
Computational Heart of Blue Waters 

•  Base Technology 
•  45 nm, 576 mm2 
•  1.2 B transistors 
•  3.5 – 4 GHz 

•  Chip 
•  8 cores 
•  12 execution units/core 
•  1, 2, 4 way SMT/core 
•  Caches 

•  32 KB I, D-cache, 256 KB L2/core 
•  32 MB L3 (private/shared) 

•  Dual DDR3 memory controllers 
•  100 GB/s sustained memory bandwidth 
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Quad-chip MCM 

Power7 ���
Chip 



Node = Quad-Chip Module + Hub chip 
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Hub Chip Module 

•  Connects to QCM  (192 GB/s) 
•  Connects to 2 PCI-e slots (40 GB/s) 
•  Connects to 7 other  QCM's in same drawer (336 GB/s – 

copper fabric) 
•  Enables a single hypervisor to run across 8 QCM's 
•  Allows I/O slots attached to the 8 hubs to be shared 

•  Connects four drawers together into a supernode (240 
GB/s per hub – optical bus) 

•  Connects up to 512 supernodes together (320 GB/s per 
hub – optical bus) 
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BPA 
 200 to 480Vac  
 370 to 575Vdc 
 Redundant Power 
 Direct Site Power Feed 
 PDU Elimination 

WCU 
 Facility Water Input 
 100% Heat to Water 
 Redundant Cooling 
 CRAH Eliminated 

Storage Unit 
 4U 
 0-6 / Rack 
 Up To 384 SFF DASD / Unit 
 File System  

CECs 
 2U 
 1-12 CECs/Rack 
 256 Cores 
 128 SN DIMM Slots / CEC 
 8,16, (32) GB DIMMs 
 17 PCI-e Slots 
 Imbedded Switch 
 Redundant DCA 
 NW Fabric 
 Up to:3072 cores, 24.6TB  
                                 (49.2TB) 

Rack 
 990.6w x 1828.8d x 2108.2 
 39”w x 72”d x 83”h 
 ~2948kg (~6500lbs) 

Data Center In a Rack 
Compute 

Storage 

Switch 

100% Cooling 

PDU Eliminated 
 

Input: 8 Water Lines, 4 Power Cords 
Out: ~100TFLOPs / 24.6TB / 153.5TB 
        192 PCI-e 16x / 12 PCI-e 8x 

           


