
Design of a Large-Scale Hybrid-Parallel Graph Library

Nicholas Edmonds∗, Jeremiah Willcock, and Andrew Lumsdaine
Indiana University

150 S. Woodlawn Ave
Bloomington, IN 47405, USA

{ngedmond,jewillco,lums}@cs.indiana.edu

Torsten Hoefler
University of Illinois at

Urbana-Champaign
1205 W. Clark St.

Urbana, IL 61801, USA
htor@illinois.edu

Abstract
The focus of traditional scientific computing has
been in solving large systems of PDEs (and the corre-
sponding linear algebra problems that they induce).
Hardware architectures, computer systems, and soft-
ware platforms have evolved together to efficiently
support solving these kinds of problems. Similar
attention has not been devoted to solving large-scale
graph problems. Recently this class of applications
has seen increased attention. The irregular, non-
local, and dynamic characteristics of these problems
require new programming techniques to adapt them
to modern HPC systems offering multiple levels of
parallelism. We describe a library for implementing
graph algorithms based on asynchronous execution
of fine-grained, concurrent operations. Prototype im-
plementations of two graph kernels which combine
lightweight graph metadata transactions with gener-
alized active messages demonstrate that it is possible
to implement graph applications which efficiently
leverage both shared- and distributed-memory par-
allelism.

1 Introduction
Graph applications are members of a new class of
data-intensive applications within high-performance
computing (HPC) which differ from traditional
compute-intensive applications in a number of im-
portant ways. Traditional compute-intensive appli-
cations, for example, those based on discretized
systems of PDEs, possess natural locality due to the
local nature of the underlying operators. Coarse-
grained approaches based on the BSP “compute-
communicate” model thus tend to yield scalable

∗Student author

solutions. The communication operations required
are also coarse, involving only a small number of
local peers.

In contrast, data-intensive problems such as graph
applications possess no underlying natural locality
which can be determined analytically. The locality
information is irregular, and embedded directly in
the data itself. This locality information describes a
dependency graph for computations which is non-
local, i.e. it does not have good separators [7].
To complicate matters further, data-intensive prob-
lems tend to be fine-grained, i.e. they possess a
large number of small objects. Performing efficient
static coalescing of these objects into larger, coarser-
grained objects is hampered by the irregularity of the
problems.

Efficiently mapping graph problems to traditional
HPC hardware designed to solve coarse-grained,
compute-intensive problems with good locality can
(and has) been done by hand, albeit with great
difficulty. These solutions required all layers of the
solution stack to be developed by the application
developer, and would need to be re-implemented
from scratch for new platforms. By observing com-
mon techniques across a number of implementations
we have designed a library which will allow the
modular implementation of parallel graph algorithms
that efficiently leverage both shared- and distributed-
memory parallelism.

At the core of this new library is the ability to
efficiently execute and manage asynchronous, inde-
pendent, lightweight handlers across address spaces.
These handlers are invoked remotely using a general-
ized form of Active Messages [9] described in detail
in [10]. In order to allow for parallel execution of

1

these handlers, lightweight memory transactions on
non-contiguous graph metadata are supported.

2 Design
Many aspects of the new library described here are
based on our experience with the Parallel Boost
Graph Library (Parallel BGL) [3]. The intent is that
this design will serve as the next generation of the
Parallel BGL. This design focuses on two primary
goals:

1. To support operating on very large-scale graphs
on distributed-memory systems with thousands
or tens of thousands of nodes.

2. To leverage parallelism at all levels, both across
nodes and within them (i.e. via threads).

2.1 Handling Data Dependencies

Graph algorithms depend on three primary types of
data: the graph data itself (vertices and edges) de-
scribing adjacency information, metadata describing
the vertices and edges, and external data structures
used for control flow (such as queues, lists, etc.).
In order to support distributed-memory computation
all of these data structures must be partitioned and
assigned to processing elements (PEs). Finding
minimal graph separators is a well known NP-hard
problem. Some random graph classes lack good sep-
arators entirely [2], while commonly used methods
tend to produce unbalanced cuts on interesting graph
classes [4, 6]. This suggests that the approximately
balanced partitions required to distribute the graph
amongst a large number of PEs are likely to cut a
large number of edges. The practical implications of
this fact are that graph operations which depend on
metadata from adjacent vertices and edges are likely
to require remote memory accesses.

According to the “owner computes” paradigm,
computations which update metadata associated with
a vertex or edge are performed by the PE which
owns that vertex or edge. A common method of
dealing with data dependencies is to cache copies
of remote data in ghost cells locally and define a
consistency model that allows up-to-date values of
these remotely owned elements to be accessed when
necessary. This approach treats the graph metadata
like an object-based Distributed Shared Memory
with weak consistency.

In the case of graph computations this approach
has two problems. First, because the dependency
structure of the computation cannot be determined
analytically it is not necessarily the case that the
owner of a piece of data knows what other PEs will
need to access it, or when. This means that data
dependencies must be satisfied by “pulling,” the data
from the owner at run-time. Secondly, enforcing
consistency requires global synchronization opera-
tions because it is not possible to determine analyt-
ically which PEs have accessed which data. These
synchronization operations group computations into
epochs based on the fact that they occur concurrently,
regardless of whether they actually share any data
dependencies.

Rather than moving dependent data to the com-
putation site, it is often desirable to move the com-
putation to the data it depends on. This approach
eliminates the need to cache and maintain non-
local data, requires less synchronization, and can
reduce latency. With graph applications in mind
we have developed a generalized active message
framework, AM++ [10], to perform this task. AM++
has a number of desirable features which have been
described previously however, the ability for mes-
sage handlers to themselves generate active mes-
sages to unbounded depth is the key feature which
enables the library design we propose. This “fire
and forget” method of computation is supported by
pluggable termination detection algorithms which
allow application developers to determine when all
handlers have completed. The termination detection
process defines epochs as with the coarse-grained
approach described previously, but avoids the need
to introduce additional epochs to enforce progress
or data consistency. This is especially beneficial in
unbalanced computations such as graph applications
because no process can proceed to the next epoch
until the longest running process in the previous
epoch has completed.

An additional benefit of using asynchronous active
message handlers as the work-distribution model is
that the location of the target data can be transparent
to the application developer. In the case of local data
the handler is invoked locally, in the case of remote
data it is invoked remotely using AM++. Locality
information is of course still available in the case that

2

it can be used to optimize communications.
One last feature is essential to scaling graph appli-

cations to thousands or tens of thousands of process-
ing elements. Because the graph data is unstructured,
it is likely that the resulting communication pattern
is dense, that is that each PE communicates with
many others. In a system with p PEs, maintaining
O(p) communication buffers and channels per PE is
both expensive and non-scalable. Host-based routing
allows a virtual topology to be embedded in the
physical network topology. Messages are then routed
through the (sparser) virtual topology which reduces
the number of peers each PE communicates with at
the expense of latency.

3 Fine-Grained Parallelism

Distributed-memory HPC systems are increasingly
composed of multicore nodes. While it is pro-
hibitively expensive to find independent sets of op-
erations within a graph application, it is possible
to enforce the atomic execution of operations at
the graph metadata level and thus allow them to
be treated as if they were independent. Graph
applications require atomic transactions on disjoint,
possibly non-contiguous metadata. Software trans-
actional memory (STM) [5, 8] is a complicated and
active area of research however, we can make use of
the fact that the metadata is related using structural
information in the graph itself and thus obviate the
need to provide fully-general STM. If the metadata
in question is all related to a single vertex or edge,
we can simply associate a lock with that vertex or
edge. In the case that the metadata is contiguous it
may also be possible to apply lock-free techniques.
If the metadata in question spans multiple vertices or
edges it is necessary to define a shared lock hierarchy
that ensures atomic access.

Encapsulating the data access concerns in the
metadata layer using memory transactions has two
benefits. First, it allows each handler invocation
to be treated independently and executed concur-
rently. Second, it allows the method in which these
transactions are performed to be optimized indepen-
dent of the applications which use them. Combin-
ing asynchronous handler invocation with metadata
transactions yields transactional semantics on graph
metadata distributed across multiple address spaces.

In this approach the application developer defines
a set of handlers which are assumed to execute
concurrently and optionally, additional control flow
which performs termination detection and other co-
ordination tasks if necessary. The progress semantics
are such that threads which perform communication
operations may execute handlers for active messages
received before returning.

Algorithm 1: Coarse-grained depth-limited search.
Input: Vertex v0, D the maximum distance to

explore from v0, neighbors(v) a function
returning the neighboring vertices of v, Q a
distributed queue

Output: d[v] the distance of v from v0
1 ∀ v ∈ V : d[v] =∞;
2 d[v0]← 0;
3 Q← ∅;
4 enqueue(Q, v0);
5 while Q 6= ∅ do
6 u← dequeue(Q);
7 foreach v ∈ neighbors(u) do
8 if d[u] + 1 < D and d[v] > d[u] + 1 then
9 d[v]← d[u] + 1;

10 enqueue(v);

Algorithm 1 shows an example of a parallel,
bounded-depth search on a graph in a coarse-grained
fashion using a distributed queue. The distributed
queue is composed of one local queue per process;
enqueueing a vertex results in the vertex being placed
on the local queue of the owning process. In this
implementation checking to see if the distributed
queue is empty requires checking the local queue
for emptiness on each process and thus serves as a
synchronization point.

Algorithm 3 shows an example of the same paral-
lel, bounded-depth search using the proposed active
message-based design. In this implementation the
distance updates are assumed to be performed atom-
ically but each instance of the discover handler
may execute concurrently. The end epoch method
returns once all active instances of the discover

handler have completed. The address space in which
the discover handler executes is determined by the
ownership of the vertex discovered (u).

3

Algorithm 2: discover(v, dv) – active message
handler for vertex discovery

Input: v the vertex to discover, dv the tentative
distance to v, D the maximum distance to
explore, neighbors(v) a function returning
the neighboring vertices of v

1 if dv < d[v] then
2 d[v]← dv;
3 if dv + 1 < D then
4 foreach u ∈ neighbors[v] do
5 discover(u, dv + 1);

Algorithm 3: Depth-limited search using active
messages.

Input: Vertex v0
Output: d[v] the distance of v from v0

1 ∀ v ∈ V : d[v] =∞;
2 begin epoch();
3 discover(v0, 0);
4 end epoch();

4 Evaluation
Preliminary evaluations of two graph kernels im-
plemented using the proposed techniques have been
performed in order to determine whether the per-
formance goals outlined are feasible. We present
performance results on Odin, a 128-node InfiniBand
cluster (Single Data Rate). Each node is equipped
with two 2 GHz Dual Core Opteron 270 CPUs and
4 GiB RAM. We ran our experiments with a pre-
release version of AM++ over Open MPI 1.4.1 and
OFED 1.3.1.

In order to assess the performance and scalabil-
ity of hybrid-parallel graph algorithms implemented
using active messages and transactional metadata
updates we compared the performance of algorithms
implemented in this fashion to the Parallel BGL. The
communication layer in the Parallel BGL performs
message coalescing, early send/receive, and utilizes
asynchronous MPI point-to-point operations and tra-
ditional collectives for communication. All results
are for Erdős-Rényi random graphs.

Figure 1 shows the performance of the active
message (AM) implementation of the Breadth-First
Search graph kernel with various numbers of threads
compared to the single-threaded Parallel BGL imple-

 0

 20

 40

 60

 80

 100

 120

 2 4 8 16 32 64 128

T
im

e
 [

s
]

Number of Nodes

PBGL
AM (1 thread)

AM (2 threads)
AM (4 threads)

(a) Strong scaling (227 vertices and 229 edges).

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 4 8 16 32 64 128

T
im

e
 [

s
]

Number of Nodes

PBGL
AM (1 thread)

AM (2 threads)
AM (4 threads)

(b) Weak Scaling (225 vertices and 227 edges per node).

Fig. 1: Performance of the Parallel BGL and active
message-based implementations on a parallel breadth-first
search.

mentation. Figure 1(a) demonstrates that not only
is the AM implementation faster than the Parallel
BGL implementation on a fixed-size problem but
that it benefits from additional threads in all cases
except with 4 threads on 32–96 processors, likely
due to contention as the amount of work available
on each node decreases. Figure 1(b) demonstrates
that the AM implementation exhibits no increase in
runtime when both the problem size and number
of processors available are increased simultaneously.
This is expected as BFS performs O(|V |) work.

The single-source shortest paths (SSSP) problem
requires finding the shortest distance from a single
source vertex to all other vertices. A variety of SSSP
algorithms exist, Figure 2 shows the performance of
∆-Stepping which has been found to be one of the
better-performing parallel algorithms on distributed-

4

 1

 10

 100

 1000

 2 4 8 16 32 64 128

T
im

e
 [

s
]

Number of Nodes

PBGL
AM (1 thread)

AM (2 threads)
AM (4 threads)

(a) Strong Scaling (227 vertices and 229 edges).

 10

 100

 1000

 1 2 4 8 16 32 64 128

T
im

e
 [

s
]

Number of Nodes

PBGL
AM (1 thread)

AM (2 threads)
AM (4 threads)

(b) Weak Scaling (224 vertices and 226 edges per node).

Fig. 2: Performance of the Parallel BGL and active
message-based implemenations computing single-source
shortest paths in parallel using ∆-Stepping.

memory systems [1]. Figure 2(a) shows that while
the Parallel BGL implementation scales inversely be-
tween 32 and 96 nodes the AM implementation con-
tinues to scale as both additional nodes and threads
are added in almost all cases. This inverse scaling
behavior is likely due to communication overheads
dominating performance as the work per processor
decreases. In Figure 2(b) the AM implementation
exhibits minor increases in runtime as problem size
and node counts are increased. This is expected
as SSSP performs O(|V | log |V |) work while the
number of nodes increases linearly. The AM imple-
mentation scales with a more gradual slope, as well
as outperforming the Parallel BGL implementation.

5 Future Work
Work is currently underway to write a full graph
library based on the design developed with the pro-
totype implementations presented. Additionally we
have begun work to evaluate the performance of
the prototype implementations on larger-scale dis-
tributed memory systems, including the IBM Blue
Gene/P. We also plan to evaluate the performance
of the tools and techniques utilized on systems with
more on-node parallelism. Developing new algo-
rithms to fit the programming model exposed by this
library is also of continuing interest.

References
[1] N. Edmonds, A. Breuer, D. Gregor, and A. Lums-

daine. Single-source shortest paths with the Parallel
Boost Graph Library. In The Ninth DIMACS Imple-
mentation Challenge: The Shortest Path Problem,
Piscataway, NJ, November 2006.

[2] P. Erdős, R. L. Graham, and E. Szemeredi. On
sparse graphs with dense long paths. Technical Re-
port CS-TR-75-504, Stanford University, Stanford,
CA, USA, 1975.

[3] D. Gregor, N. Edmonds, A. Breuer, P. Gottschling,
B. Barrett, and A. Lumsdaine. The Parallel Boost
Graph Library. http://www.osl.iu.edu/
research/pbgl, 2005.

[4] S. Guattery and G. L. Miller. On the quality
of spectral separators. SIAM Journal on Matrix
Analysis and Applications, 19(3):701–719, 1998.

[5] M. Herlihy and J. E. B. Moss. Transactional Mem-
ory: Architectural support for lock-free data struc-
tures. SIGARCH Comput. Archit. News, 21(2):289–
300, 1993.

[6] K. Lang. Fixing two weaknesses of the spectral
method. In Neural Info. Proc. Systems, 2005.

[7] A. L. Rosenberg and L. S. Heath. Graph Separators,
with Applications. Kluwer Academic Publishers,
Norwell, MA, USA, 2001.

[8] N. Shavit and D. Touitou. Software transactional
memory. In Principles of Distributed Computing,
pages 204–213. ACM, 1995.

[9] T. von Eicken, D. E. Culler, S. C. Goldstein, and
K. E. Schauser. Active Messages: A mechanism for
integrated communication and computation. In Intl.
Symp. on Comp. Arch., pages 256–266, 1992.

[10] J. Willcock, T. Hoefler, N. Edmonds, and A. Lums-
daine. AM++: A generalized active message frame-
work. In Parallel Architectures and Compilation
Techniques, Sept. 2010.

5

