
Employing a study of the robustness metrics to assess the reliability of
dynamic loop scheduling∗

Srishti Srivastava1,2,†, Florina M. Ciorba3 and Ioana Banicescu1,2

Mississippi State University
1Department of Computer Science and Engineering

2Center for Computational Sciences - HPC2

3Center for Advanced Vehicular Systems - HPC2

{srishti@hpc, florina@cavs, ioana@cse}.msstate.edu

Abstract

To achieve best performance, scientific applications are executed on parallel and distributed heteroge-
neous computing systems. These applications often are computationally intensive, data parallel, irregular,
and usually contain large loops that exhibit non-uniform characteristics depending upon their semantic
structure during execution. These loops are the most data parallel and computationally intensive part of the
applications, and therefore, the main focus of this work is on loop iterations scheduling. Improper schedul-
ing of such loop iterations may lead to load imbalance, which is the dominant factor for performance
degradation. A number of dynamic loop scheduling (DLS) techniques have been developed to address the
issue of load imbalance for scientific applications on dynamically changing environments. The increasing
demand for faster execution of iterations in larger simulations of more complex application models require
that DLS provide robust, on-demand performance, on dynamically scalable, high performance computing
systems. To evaluate the robustness of these DLS techniques two robustness metrics have previously been
formulated to guarantee flexibilityand resilience. In this work, we describe simulations of DLS techniques
using Alea, a GridSim-based scheduling simulator. Based on the simulation results, we calculate the ro-
bustness metrics and show how to use them to determine the most robust DLS techniques.

1. Introduction

Scientific applications are often executed on par-
allel and distributed heterogeneous systems in or-
der to reduce the time and cost to solution. A num-
ber of factors such as, computation time, overhead
of communication and managing parallelism, and
others, affect the performance of these applications
when executed on parallel systems. One of the ma-
jor performance degradation factors is the load im-
balance among processors. Many scientific appli-
cations contain large loops which may have irreg-
ular iteration execution times due to variances in

∗This work was partially supported by the following grants:
NSF #0934393, NSF DBI-0923469 and DOE #008860013.

†Srishti Srivastava is the student author.

algorithmic and systemic characteristics. The irreg-
ular execution of the loop iterations often leads to
load imbalance, which degrades the performance of
scientific applications. A number of dynamic loop
scheduling (DLS) techniques have been proposed
to provide load balancing. However, scheduling
scientific applications on large scale heterogeneous
systems requires some mechanism to ensure the ro-
bustness of these DLS techniques.Robustness(re-
liability) of a DLS method w.r.t. system load is
a measure offlexibility of its resource allocation
w.r.t. the variation of the system load. Moreover,
robustness(reliability) of a DLS method w.r.t. re-
source failures is a measure ofresilienceof its re-
source allocation w.r.t. the variation in the num-
ber of processor failures. The mechanism to as-



sess the robustness of the DLS techniques becomes
more important as the underlying systems are scal-
ing rapidly from multi-core to peta-scale to exa-
scale, and from homogeneous to heterogeneous.
Recently, metrics have been formulated to assess
the robustness of the DLS methods, with the main
focus on the methods which are inherently more
robust, such as, Factoring (FAC), Weighted Factor-
ing (WF), Adaptive Weighted Factoring (AWF) and
its variants AWF-batched (AWF-B), AWF-chunked
(AWF-C) and, Adaptive Factoring (AF), which are
discussed in [2, 5]. Previously, robustness of re-
source allocation or task scheduling has been ad-
dressed only for individual methods or for indi-
vidual applications. The focus of this research
work is on the application of the generalized ro-
bustness metrics for a number of non-adaptive DLS
(NADLS) and adaptive DLS (ADLS) techniques,
which can be used for any class of scientific appli-
cations. This paper presents the implementation of
some of the DLS methods using the Alea simula-
tor [7], which is specifically designed to study the
advanced scheduling techniques in a Grid environ-
ment and is based on the latest GridSim 5.0 simula-
tion toolkit [4]. The results obtained from the sim-
ulation of the DLS methods used to schedule sev-
eral jobs/tasks on perturbation free environments
and on environments with perturbations leading to
load imbalance, are further employed to calculate
the robustness metrics. The metrics are further used
to determine the most robust DLS methods and en-
sure their robustness for unpredictable dynamically
changing systems due to variable workloads and
processor failures.

The rest of the paper is organized as follows.
Section 2 outlines the robustness metrics and re-
lated work. Section 3 describes the implementation
of the DLS methods and the calculation of the ro-
bustness metrics, while the results and their analy-
sis are presented in Section 4. The conclusions, the
significance of this work, and potential future work
are discussed in Section 5.

2. Related work

In this section, background work in addition to
the one already presented in the introduction sec-
tion, is being discussed. The formulation of the ro-

bustness metrics is based on the methodology pro-
posed in [1], known as the Feature Perturbation
Impact Analysis (FePIA) procedure. Although the
methodology adopted and the overall idea behind
calculating the robustness metric for resource al-
locations in [1] and the robustness metric for task
scheduling in [3] and [9] is the same, they differ
in the perspective taken to achieve the most ro-
bust application performance. While in [1] the au-
thors investigate the robustness from the resources’
perspective, herein we investigate achieving robust-
ness from the applications point of view. Two ro-
bustness metrics, aflexibility metric to measure ro-
bustness against system load variations (Λ), and a
resiliencemetric to measure robustness against re-
source failures (F), were formulated in [3] and [9].
The performance feature for both metrics is identi-
fied to be the parallel execution time,TPAR. One
technique is considered most robust if it can handle
the largest variation in perturbation and still have
minimal variation from a fixed value of the perfor-
mance feature, or if it has the lowest impact on the
performance feature for a fixed variation interval
of the perturbation parameter. Thus, the robustness
(flexibility or resilience) metric is considered to be
the robustness value of the least robust DLS tech-
nique.

The two robustness metrics for task allocation
(or loop scheduling) using the DLS techniques, are
presently in the process of being evaluated experi-
mentally using simulations to be completed in the
near future. It should be noted that this paper ad-
dresses the behavior of the DLS methods in the
presence of resource failures, which is a novel con-
tribution and has not been analyzed until now.

3. Implementation using a GridSim-based
scheduler

In this paper, we present a description of the on-
going work on implementing the DLS techniques
using Alea, a GridSim-based scheduler. This sec-
tion gives a brief overview of Alea and describes
the way the DLS techniques are implemented into
this open-source scheduler. Further in this section,
we explain how the obtained simulation results can
be used to determine the robustness value of each
DLS method for a scientific application, and hence,



to calculate the robustness metrics which can be
used to guarantee theirflexibility andresilience.
Implementing DLS techniques using Alea

A detailed description of the Alea simulator is
given in [7]. To implement the DLS techniques in
Alea, we only require knowledge of the job submis-
sion system, the scheduler and, the resources. The
job submission system is responsible for submitting
the job descriptions, which in our case are the indi-
vidual loop iterates, to the scheduler. The input to
the job submission system is a workload file, which
is often a text file containing the different jobs and
their respective descriptions. The format adopted in
this work for job descriptions is the Standard Work-
load Format (SWF) [6]. We use a workload gener-
ator called Lublin [8], written in C, to generate the
SWF file. The scheduler receives all the jobs and
schedules them to the available resources using the
incorporated DLS techniques. The job submission
system is notified upon the completion of a job and
calculates the job-related statistics (execution time,
scheduling overhead, and others).
Calculating the robustness metrics

The robustness valueof a DLS method is given
by therobustness radius, rDLS , which is the max-
imum increase in the perturbation factor (system
load or resource failure) in any direction from its
original value, such that there is no tolerance inter-
val violation for the parallel execution time,TPAR.
Similarly, rDLS could also be the increase in the
value ofTPAR from its original value for a fixed
variation in the value of the perturbation parame-
ter. In this work we focus on the latter to calculate
rDLS . To emulate system load variations, we in-
ject interactive jobs with unknown arrival and ex-
ecution times in the simulation; these jobs execute
on the same machines as our application, in a space-
sharing fashion. We maintain the system load and
its variation in a vector,Λ = [λ1, . . . , λP ], where
eachλj , 1 ≤ j ≤ P , maintains the load on machine
mj . Similarly, to emulate resource failures, we con-
sider a vectorF = [f1, f2, ..., fP ], where eachfj ,
1 ≤ j ≤ P , is a binary value such that0 indicates a
machine being alive and1 indicates a machine fail-
ure. In contrast to [3] and [9], where failures were
assumed to occur only once during the simulation,
herein we consider that they can occur at multiple
times during the simulation. Therobustness metric,

ρDLS(Φ,Π), is the minimum of all robustness radii
values, whereΦ is the performance feature andΠ
is the perturbation parameter.

Figure 1. Execution of FAC, WF and AWF, respec-
tively, in a loaded environmentwithout resource failures
for 1024 loop iterates on 4 heterogeneous processors;
mj represents the number of iterates allocated to pro-
cessorj, Tj is the execution time of processorj, andλj

is the load on processorj.

4. Simulation results and analysis

This section illustrates a small scale example of
the results obtained from the simulations. Due to
space limitations, we include results for a small
number of loop iterates (1024) scheduled on 4 het-



Figure 2. Execution of FAC, WF and AWF in a
dedicated system with resource failuresfor 1024 loop
iterates on 4 heterogeneous processors;mj represents
the number of iterates allocated to processorj, Tj is the
execution time of processorj, andfj denotes the failure
status of processorj.

erogeneous processors. Figure 1 shows the results
obtained for FAC, WF and AWF, respectively, in
the heterogeneous system in the presence of sys-
tem load variations. To emulate an uncertain envi-
ronment the system loadΛ is varied from its ini-
tial value after the scheduling step 3 and it resumes
to its initial state after scheduling step 7. Figure 2
shows the performance of the FAC, WF and AWF
techniques for the dedicated heterogeneous system
in the presence of resource failures. The resource
failures occur after the completion of scheduling
step 3 and 7. We assume that a resource failure
is permanent. Both Figure 1 and 2, display three
columns corresponding to every processor. The
first column of a processormj shows the number
of tasks allocated to it, the second column shows
the estimated load onmj in Figure 1, and the pro-
cessor failure status in Figure 2, and and the third
column shows its finishing time. Finally, Figure 3
shows the derivation of the robustness values for the
three DLS methods and the calculation of the two
robustness metrics. Figure 3 also shows the use of
the tolerance factorsτ1, τ2, τ3, as well as thebest,
average andworst case analysis of the robustness
of the DLS methods based on the different values
of the three tolerance factors.τ1 is used to calculate
theflexibility metric as the minimum of the robust-
ness values of all DLS methods as follows:

TPAR(Λ) ≤ τ1 · TPAR(Λorig) such that
τ best
1 = 1 (condition 1.a)

τavg
1 = 1.25 (condition 1.b)

τworst
1 = 1.50 (condition 1.c)

where TPAR(Λ) is the parallel time computed
in the presence of system load variations and
TPAR(Λorig) is the parallel execution time in the
dedicated heterogeneous system. Similarly, for re-
source failures theresiliencemetric is obtained as
the minimum of the robustness values of all DLS
methods as follows:
(Nresch(F) ≤ τ2 ·N) ∧ (TPAR(F) ≤ τ3 · TPAR(F orig))
such that

(τ best
2 = 0) ∧ (τ best

3 = 1) (condition 2.a)
(τavg

2 = 0.25) ∧ (τavg
3 = 1.25) (condition 2.b)

(τworst
2 = 0.50) ∧ (τworst

3 = 1.50) (condition 2.c)

whereN resch(F) is the number of iterates to be
rescheduled when a resource fails. In Figure 3,
for every DLS method we give a TRUE or FALSE
value, when the method does or does not satisfy a
particular condition. In the top part of the table,



we calculate the flexibility metric based on the con-
ditions satisfied by each technique. Similarly, we
calculate the resilience metric in the lower part of
the table.

Figure 3. Calculating the robustness radii and deter-
mining the robustness (flexibility and resilience) metrics

5. Conclusions: usefulness and future work

Calculating the robustness metrics depends on
the finishing time of each processor, the total par-
allel time TPAR, the number of tasks assigned to
every processor and certain other application, sys-
tem or algorithm specific parameters which can be
obtaineda priori. Further, the metrics can be in-
tegrated into the scheduler to adapt and steer the
scheduling decisions autonomously. The robust-
ness metrics are also useful when used in con-
junction with other performance metrics, such as
makespan, to select the most robust DLS technique
among the techniques which yield equal perfor-
mance from the parallel execution time and cost
points of view. The constraints of different types
of applications, such as time critical or non-time
critical applications, can be imposed by varying the
bounds on the values of the tolerance factors,τ1, τ2,
andτ3. This enables the use of these metrics in con-
junction with other performance metrics, such as,
makespan, resource utilization, and others, to en-
sure the robust execution of scientific applications
on heterogeneous computing systems. Using Alea,
we can simulate the execution of different types of
applications, on different types of computing sys-
tems and run them over a large number of applica-
tion time-steps, with the required level of detail to
assess the robustness of the DLS techniques.

The immediate future work plan includes: (1)
accounting for other types of perturbations and

calculating individual robustness metrics for each
type, (2) formulating the robustness metric for mul-
tiple perturbations, (3) integrating the robustness
metrics within the scheduler for selecting the most
robust technique during the execution of the appli-
cation.

References

[1] S. Ali, A. Maciejewski, H. Siegel, and J.-K. Kim.
Measuring the robustness of a resource alloca-
tion. IEEE Transactionson ParallelandDistributed
Systems, 15(7):630 – 641, Jul. 2004.

[2] I. Banicescu and R. L. Cariño. Addressing the
stochastic nature of scientific computations via dy-
namic loop scheduling.Trans.on Num. Anal.-Sp.
Iss.onCombinatorialSci.Comp., 21:66–80, 2005.

[3] I. Banicescu, F. M. Ciorba, and R. L. Carino. To-
wards the robustness of dynamic loop scheduling on
large-scale heterogeneous distributed systems.Proc.
of IEEEInt’l Symp.onPar.andDist.Comp., 0:129–
132, 2009.

[4] R. Buyya and M. Murshed. Gridsim: A toolkit
for the modeling and simulation of distributed re-
source management and scheduling for grid comput-
ing. Concurrencyand Computation: Practiceand
Experience(CCPE), 14(13):1175–1220, 2002.

[5] R. L. Carĩno and I. Banicescu. Dynamic scheduling
parallel loops with variable iterate execution times.
In Proc.of theIEEE/ACM Int’l Par.andDist. Proc.
Symp. (IPDPS-PDSECA2002) (CDROM). IEEE
Computer Society Press, 2002.

[6] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones,
S. T. Leutenegger, U. Schwiegelshohn, W. Smith,
and D. Talby. Benchmarks and standards for the
evaluation of parallel job schedulers. InIPPS/SPDP
’99/JSSPP’99: Proc.of the JobSch.Strat.for Par.
Proc., pages 67–90, London, UK, 1999. Springer-
Verlag.

[7] D. Klusáček and H. Rudov́a. Alea 2 – job schedul-
ing simulator. InProc.of the 3rd Int’l ICST Conf.
onSim.ToolsandTechn.(SIMUTools2010). ICST,
2010.

[8] U. Lublin and D. G. Feitelson. The workload on par-
allel supercomputers: modeling the characteristics
of rigid jobs. J.Par.andDist. Comp., 63(11):1105–
1122, 2003.

[9] S. Srivastava, I. Banicescu, and F. Ciorba. Inves-
tigating the robustness of adaptive dynamic loop
scheduling on heterogeneous computing systems.
In Proc. of the IEEE/ACM Int’l Par. and Dist.
Proc.Symp.(IPDPS2010-PDSEC),CDROM, IEEE
Comp.Soc.Press, pages 1 –8, Apr. 2010.


