
Refining High Performance FORTRAN Code from
Programming Model Dependencies

Ferosh Jacob⋆∗, Jeff Gray∗, Purushotham Bangalore†and Marjan Mernik‡
∗Department of Computer Science

University of Alabama
Tuscaloosa, AL 30487

Email: {fjacob, gray}@ua.edu
†Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35205

Email: puri@cis.uab.edu
‡Faculty of Electrical Engineering and Computer Science

University of Maribor
Maribor, Slovenia

Email: marjan.mernik@uni-mb.si

Abstract

For next generation applications, programmers will be
required to adapt to a new style of programming to utilize
the parallelism in the processors available to them. Abstrac-
tions in parallel programming languages and directives or
annotations in sequential code have shown initial promise in
reducing some of the burden of parallel programming. How-
ever, even with all of these advances, parallel programming
still requires skill beyond that possessed by an average pro-
grammer. This is primarily due to the architecture-specific
details in the domain. In this paper, we introduce a new
approach to separate architecture dependencies from the
program logic, enabling the programmer to execute the same
computation in different platforms without actually changing
the programming logic, but with capabilities to fine-tune the
performance in the target platform. In this paper, we focus
on refactoring existing FORTRAN code to support the latest
HPC libraries.

1. Introduction

Parallel programming is essential for large simulations
and cross-disciplinary scientific inquiries. Parallelismen-
ables the decomposition of a large computational domain
into numerous subdomains, and employs a large number of
processors to compute the solution simultaneously in parallel
on these subdomains. FORTRAN has been the preferred
language among the High Performance Computing (HPC)
community over the last 40 years. E. Loh argues that HPC
benchmarks can be written in the “ideal HPC language,

⋆ Student

Figure 1. OpenMP/MPI programs with problem size

FORTRAN” in comparable lines of code with that of new
programming languages [1]. As an HPC language, there
exist many legacy applications written in FORTRAN.

Using traditional approaches that do not allow separation
of the computation from the underlying HPC library, a
developer must maintain simultaneously the same set of sim-
ulation code for each variation of HPC APIs. As an example,
the execution plot of the satisfiability problem in Figure
1 shows that even though the performance of OpenMP
and MPI are comparable, for small problems the OpenMP
version is faster than an MPI solution. In cases where
the size of the data varies, different versions of the same
program might be required if a single HPC library is used.
Manually maintaining such variations induces unnecessary
redundant effort that is also very prone to human errors in
maintaining and updating the core algorithms. Therefore, the
development of an HPC program is often limited to a specific
parallel library. Otherwise, the programmer pays the price

of developing and maintaining several versions of the same
program.

Because of the portability issues and dearth of FORTRAN
programmers, there may be some benefits in combining ex-
isting FORTRAN applications with a language-independent
DSL (Domain-Specific Language). If the DSL can express
the problem without any language dependency, then the
computation could be executed in platforms that support par-
allel execution with proper configuration. The DSL should
be powerful enough to express any parallel problem and
configurable enough to provide optimal performance. We
propose a process whereby a legacy application written
in FORTRAN (using MPI, OpenMP or a combination of
both) is converted to an application that is complimented
by a DSL. The refactoring of the legacy application would
support retargeting of the application to different HPC
platforms (e.g., OpenMP, MPI, CUDA) without significant
performance loss.

Our recent work has focused on a DSL named CalCon [2],
which has two parts representing the core computation and
the configuration concerns of a specific platform and pro-
gramming model. The description of the core computation is
powerful enough to express a computation in a generalized
manner that is free from platform-specific issues that often
tangle the code base. The configuration part of CalCon is
tightly coupled to the execution environment. In addition,
optimized libraries or templates for the new programming
model and/or language will be required so that the new code
generated delivers desired performance. With this intent,
we developed Abstract APIs [3] that provide an interface
for two leading GPU programming languages: CUDA and
OpenCL. CUDACL [4] is a tool developed over the Abstract
APIs to configure GPU parameters. By introducing CalCon,
support is extended to shared memory from GPUs. CalCon
has shown the benefits of separating the computation from
the platform to allow retargeting and adaptation of the
computation to new paradigms (e.g., from shared memory
to a GPU-based solution). CalCon was targeted to the C
programming language and more emphasis was given to
the development phase. This paper introduces the extension
of similar ideas to FORTRAN, with more emphasis on the
maintenance phase of software engineering.

This paper is a first stage in refactoring the FORTRAN
MPI/OpenMP code to parallel code and is structured as
follows. Section 2 discusses the analysis of ten FORTRAN
programs written for OpenMP in diverse domains. Section
3 explains specific details of the approach used to separate
parallel concerns from the shared memory dependencies.
Section 4 includes a case study to extend the approach to
MPI. A list of related works is enumerated in Section 5. The
paper concludes with some future works in Section 6.

Table 1. Analysis of OpenMP FORTRAN programs

No Program Name Total
LOC

Parallel
LOC

No. of
blocks

R W

1 2D Integral with
Quadrature rule

601 11 (2%) 1
√

2 Linear algebra
routine

557 28 (5%) 4
√

3 Random number
generator

80 9 (11%) 1

4 Logical circuit
satisfiability

157 37
(18%)

1
√

5 Dijkstras shortest
path

201 37
(18%)

1

6 Fast Fourier
Transform

278 51
(18%)

3

7 Integral with
Quadrature rule

41 8 (19%) 1
√

8 Molecular
dynamics

215 48
(22%)

4
√ √

9 Prime numbers 65 17
(26%)

1
√

10 Steady state heat
equation

98 56
(57%)

3
√ √

Table 2. Classification of OpenMP directives

Shared memory features Parallel feature
Variable modifiers, Critical
and Singular blocks, Num-
ber of threads

Parallel blocks, Reduction
and Barrier blocks, Number
of instances, Workshare

2. Program analysis of FORTRAN OpenMP
programs

To understand the usage of OpenMP in FORTRAN pro-
grams, ten programs from different domains were selected.
A Summary of the analysis is shown in Table 1. Total
Lines of Code (LOC) shows the total number of lines in
the program, excluding comments, print statement and blank
lines. Parallel LOC shows the number of lines inside a
parallel block including the OpenMP declarations. The ratio
of parallel LOC to the total can be a measure to the parallel
nature of the programs. The “No. of blocks” column shows
the number of parallel blocks in each program. The last two
columns in the table illustrate whether the parallel block has
workshare and reduction operations. The workshare directive
in OpenMP splits work among the available threads, and the
reduction directive combines the variable values of threads
to a single value when exiting the block.

The goal of the analysis was to separate parallel pro-
gramming from the shared memory model dependencies.
The findings after the analysis are shown in Table 2 and
explanation for including a directive to one of the categories
is discussed in the following subsections.

2.1. Shared Memory features

This category includes the OpenMP directives which bind
the parallel programs to the shared memory architecture or

features of an OpenMP program that are not required to
express the parallel nature of the problem. These directives
may not be applicable if these programs are ported to a
specific architecture, but are essential for performance tuning
in shared memory architectures.

• Variable modifiers: OpenMP provides capabilities
to define the scope of variables using keywords
private, shared, firstprivate, copyin.
These modifiers clearly have dependencies to the shared
memory architecture and may be useful for a platform
with different levels of shared memory (e.g., GPUs have
global, constant and local shared memory).

• Critical and Singular blocks: If a block of code is
defined as a critical block then it will be executed by
only one thread at a time. In a programming model
where the execution variables are not shared, the critical
block is irrelevant.

• Number of threads: The number of threads for op-
timal performance is limited by either the execution
environment or the context of the current problem.
When executed in another environment (e.g., MPI), the
important parameter will be the number of processes.
Hence, in general, the number of instances may be
required to express a parallel computation.

2.2. Parallel features

This category includes the parallel features that are re-
quired to express the parallel computation. An assumption
is that the programmer is using the Single Program Multiple
Data (SPMD) programming style. The features identified
from the parallel programs analyzed are explained as fol-
lows:

• Parallel blocks: In the Single Program Multiple Data
(SPMD) style, there should be a way to distingush the
code to be executed by a single thread and the code to
be executed in parallel. Parallel blocks can define the
code that must be executed in parallel.

• Reduction and Workshare blocks: Reduction and
Workshare are included as parallel features not in the
same meaning as they are used in OpenMP. Workshare
refers to setting up the data for executing and reduction
refers to distributing the data after execution.

• Number of instances: This refers to the number of
threads in shared memory or processes in MPI. In a
massively parallel environment like a GPU, the number
of threads is usually limited by the context of the
problem. As such, the number of threads is a problem
detail and not an implementation detail.

• Barrier: Barrier is a key concept in parallel pro-
gramming that provides synchronization among the
instances.

! Refined FORTRAN program
c a l l parallel (instance_num , satisfiability)
ilo2 = ((instance_num − id) * ilo &

+ (id) * ihi) &
/ (instance_num)

ihi2 = ((instance_num − id − 1) * ilo &
+ (id + 1) * ihi) &
/ (instance_num)

solution_num_local = 0

do i = ilo2 , ihi2 − 1
c a l l i4_to_bvec (i , n , bvec)
value = circuit_value (n , bvec)
i f (value == 1) then
solution_num_local = solution_num_local + 1

end i f
end do
solution_num = solution_num + solution_num_local

c a l l parallelend (satisfiability)

! Configuration file for FORTRAN program above
block satisfiability
init :
!$omp parallel &
!$omp shared (ihi, ilo, thread_num) &
!$omp private (bvec, i, id, ilo2, ihi2,

j , solution_num_local , value) &
!$omp reduction (+ : solution_num).
final : .

Figure 2. Refined program for the satisfiability problem

2.3. Analysis Conclusion

A DSL that uses only the parallel features can express
parallel problems in a platform-independent manner. Most of
the programs involve an initialization segment that initializes
the execution of the parallel part, and a code segment that
is used to collect data from the parallel instances.

3. Proposed approach to express parallel pro-
grams in FORTRAN

To address the learning curve challenges of adopting a
new parallel API, the CalCon DSL uses FORTRAN function
calls to specify the parallel features in a program. The
program looks like a typical FORTRAN program with some
additional function calls that are not defined inside the
program. These function calls are later parsed by the CalCon
compiler, which replaces the function calls with generated
FORTRAN code based on the configuration (machine or
architecture details) specified in the DSL.

In a shared memory programming model, the programs
are written such that communication is explicit and synchro-
nization is implicit. This is in contrast to most distributed
programming models, where synchronization is explicit and
communication is explicit. To an approach that can serve
as a substitute for both of these programming models,
both communication and synchronization has to be explicit.
Similar to OpenMP, if not specified as a parallel block, code
will be executed only by a single/main thread.

Example source code and configuration is shown in Figure
2 for the circuit satisfiability problem. From our analysis,a

parallel program consists of blocks of code that have to be
executed in parallel. Before and after each parallel block
there can be a code segment that is machine or architecture
dependent. As shown in Figure 2, the machine dependent
blocks are separated in a configuration file.

3.1. Implementation details of the approach

If the targeted platform is shared memory, we start with
a template of an OpenMP FORTRAN program with the
required definitions and libraries. The program file is read
by a FORTRAN parser and written into the template line by
line; any occurrences of pre-defined functions (parallel,
endparallel) in the program are replaced by the cor-
responding blocks defined in the configuration file. The
template has pre-defined variables likeinstance_num
(total number of instances), andid (identifier for the
current instance). Users can define their own functions as
distribute, which is explained in the case study.

4. An MPI case study: Integral estimation
using the quadrature rule

In this section, we explain our approach applied to the
implementation of an MPI program to estimate an integral
shown in the equation50

π

∫ 10

0

dx

2500x2+1
.

Figure 3 shows important parts of a conventional MPI
program to estimate the integral using the quadrature rule.
The program shows the general structure of an MPI program
and is divided into three sections: 1) Setting up the data, 2)
Parallel Execution, and 3) Collecting results. The following
discussion identifies these three sections in the MPI program
and explains how our approach is applied to the problem.

4.1. MPI program for integral estimation

An MPI program has some initialization code that spec-
ifies the number of processes, the id of each process
(MPI_Comm_size, MPI_Comm_rank). These lines ap-
pear at the beginning of the program. The three sections of
integral estimation program are explained as follows:

1) Setting up the data: In this step, the master process
divides the data so that it can be made accessible
to other processes. The master process broadcasts or
sends the variables to another process, in this case after
calculating the corresponding values ofmy_a and
my_b to each process. The calculation and sending of
my_b is not shown in the code of Figure 3 to improve
clarity. Usually, this code is executed by the master
thread (my_id==0); hence, the code is inserted inside
the conditional shown in Figure 3.

2) Parallel execution: This section includes the code to
be executed in parallel. Depending on whether the

!Part 1: Master process setting up the data
i f (my_id == 0) then do p = 1 , p_num − 1

my_a = (r e a l (p_num − p , kind = 8) * a &
+ r e a l (p − 1 , kind = 8) * b) &
/ r e a l (p_num − 1 , kind = 8)

t a r g e t = p
tag = 1
c a l l MPI_Send (my_a , 1 , MPI_DOUBLE_PRECISION , &

t a rge t , tag , &MPI_COMM_WORLD , &
error_flag)

end do

!Part 2: Parallel execution
e l s e
source = master
tag = 1
c a l l MPI_Recv (my_a , 1 , MPI_DOUBLE_PRECISION , source ,

→֒ tag , &
MPI_COMM_WORLD , s ta tus , error_flag)

my_total = 0 .0D+00
do i = 1 , my_n
x = (r e a l (my_n − i , kind = 8) * my_a &

+ r e a l (i − 1 , kind = 8) * my_b) &
/ r e a l (my_n − 1 , kind = 8)

my_total = my_total + f (x)
end do
my_total = (my_b − my_a) * my_total / r e a l

(my_n , kind = 8)
end i f

!Part 3: Results from different processes are collected to
! calculate the final result

c a l l MPI_Reduce (my_total , total , 1 ,
MPI_DOUBLE_PRECISION , & MPI_SUM ,
master , MPI_COMM_WORLD , error_flag)

Figure 3. MPI program for integral estimation

master thread is participating in the execution, the
code is inserted inside theelse condition. Before
execution, each process receives the data sent or
broadcasted by the master thread.

3) Collecting results: After finishing the execution, ev-
ery process has a total (my_total) and the final total
(total) that is the sum of individual process totals.
MPI_Reduce achieves this in the program.

4.2. Refined parallel program for integral estima-
tion

The refined parallel program using the new approach
is shown in Figure 4. The refined parallel program that
uses our approach is independent of any architecture or
language. The template used has definitions and libraries
required for MPI execution, as well as pre-defined variables
for receiving the process identifier (id) and total number
of processes (instance_num). The new code after the
refined program will be inserted inside theif (id=0)
condition and the parallel block code would be inserted into
the else condition.

5. Related works

There has been much effort in converting sequential code
to parallel code even before the introduction of the GPU

!Work share part
do p = 1 , instance_num − 1
my_a = (r e a l (instance_num − p , kind = 8) * a

→֒ &
+ r e a l (p − 1 , kind = 8) * b) &
/ r e a l (instance_num − 1 , kind = 8)

c a l l distribute (my_a)
end do

!Declaring parallel block
c a l l parallel (num , q u a d r a t u r e)

my_total = 0 .0D+00
do i = 1 , my_n
x = (r e a l (my_n − i , kind = 8) * my_a &

+ r e a l (i − 1 , kind = 8) * my_b) &
/ r e a l (my_n − 1 , kind = 8)

my_total = my_total + f (x)
end do
my_total = (my_b − my_a) * my_total / r e a l

(my_n , kind = 8)
c a l l endparallel (q u a d r a t u r e) ;

! Configuration file for FORTRAN program above
block q u a d r a t u r e
init :

source = master
tag = 1
c a l l MPI_Recv (my_a , 1 , MPI_DOUBLE_PRECISION , source ,

→֒ tag , &
MPI_COMM_WORLD , s ta tus , error_flag) .

final :
c a l l MPI_Reduce (my_total , total , 1 ,

MPI_DOUBLE_PRECISION , & MPI_SUM ,
master , MPI_COMM_WORLD , error_flag) .

distribute param :
c a l l MPI_Send (param , 1 , MPI_DOUBLE_PRECISION , &

t a rge t , tag , &MPI_COMM_WORLD , &
error_flag) .

Figure 4. Refined program for integral estimation

[5]. Automatic parallelization of sequential code may not
be the perfect solution for some cases, as revealed by our
analysis. Parallel FORTRAN Converter (PFC) [6], [7] is a
program to convert sequential programs written in FOR-
TRAN to FORTRAN 8x, which is a version of FORTRAN
compatible with vector computers. This program replaces
loops with array operations wherever possible by studying
the data dependency in the program. PAT [8] is another
tool supporting interactive conversion of sequential codeto
parallel code in FORTRAN. Another research direction is
converting code from one model into another [9], [10]. These
efforts are not targeted for FORTRAN. Furthermore, they
miss the opportunity to identify the parallel features from
a program. Hence, when porting to a new architecture, the
program has to be rewritten.

6. Conclusion

For the evolution of high performance FORTRAN code,
it is necessary to separate the code of the core computation
from the machine or architecture dependencies that may
come from usage of a specific API. We analyzed ten FOR-
TRAN programs from diverse domains to understand the
usage of OpenMP in scientific code. The analysis revealed

that programs often share a common structure such that
platform and machine details could be specified in a different
file. A case study is included to show that the approach can
be extended to other architectures.

Future work includes refactoring the legacy code to the
approach specified in this paper with minimum input from
the user. Another direction will be focused on executing
the parallel programs to a GPU. Conducting a user study
to explore the advantages and disadvantages from a human
factors perspective is another direction of work.

References

[1] F. Jacob, D. Whittaker, S. Thapaliya, P. Bangalore,
M. Mernik, and J. Gray, “CUDACL: A tool for CUDA and
OpenCL programmers,” inProceedings of the 17th Inter-
national Conference on High Performance Computing, Goa,
India, in press.

[2] F. Jacob, R. Arora, P. Bangalore, M. Mernik, and J. Gray,
“Raising the level of abstraction of GPU-programming,” in
Proceedings of the 16th International Conference on Parallel
and Distributed Processing, Las Vegas, NV, July 2010, pp.
339–345.

[3] F. Jacob, “Extending abstract GPU APIs to shared memory,”
in Proceedings of the ACM International Conference com-
panion on Object Oriented Programming Systems Languages
and Applications companion, Reno, NV, October 2010, pp.
217–218.

[4] E. Loh, “The ideal HPC programming language,”Communi-
cations of the ACM, vol. 8, no. 6, pp. 42–47, 2010.

[5] R. Allen and K. Kennedy, “Automatic loop interchange,”
SIGPLAN Notes, vol. 39, no. 4, pp. 75–90, 2004.

[6] A. Basumallik and R. Eigenmann, “Towards automatic trans-
lation of OpenMP to MPI,” inProceedings of the 19th In-
ternational Conference on Supercomputing, Cambridge, MA,
June 2005, pp. 189–198.

[7] R. Allen and K. Kennedy, “PFC: A program to convert
FORTRAN to parallel form,” inTechnical Report MASC-
TR82-6, Rice University, Houston, TX, March 1982.

[8] B. Appelbe, K. Smith, and C. McDowell, “Start/Pat: A
parallel-programming toolkit,”IEEE Software, vol. 6, no. 4,
pp. 29–38, 1989.

[9] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: a
compiler framework for automatic translation and optimiza-
tion,” in Proceedings of the 14th symposium on Principles
and Practice of Parallel Programming, Raleigh, NC, February
2009, pp. 101–110.

[10] Y.-S. Kee, J.-S. Kim, and S. Ha, “ParADE: An OpenMP pro-
gramming environment for SMP cluster systems,” inProceed-
ings of the 17th International Conference on Supercomputing,
Phoenix, AZ, November 2003, pp. 12–15.

