
Fast Histograms using Adaptive CUDA Streams 

Sisir Koppaka*,1,2, Dheevatsa Mudigere2, Srihari Narasimhan2, Babu Narayanan2 
1Depts. Of Mechanical & Industrial 

Engineering 
Indian Institute of Technology, Kharagpur 

Kharagpur, India 

2Computing & Decision Sciences Lab 
GE Global Research, JFWTC 

Bangalore, India 

 
 

Abstract— Histograms are widely used in 
medical imaging, network intrusion 
detection, packet analysis and other stream-
based high throughput applications. 
However, while porting such software stacks 
to the GPU, the computation of the 
histogram is a typical bottleneck primarily 
due to the large impact on kernel speed by 
atomic operations. In this work, we propose 
a stream-based model implemented in 
CUDA, using a new adaptive kernel that can 
be optimized based on latency hidden CPU 
compute. We also explore the tradeoffs of 
using the new kernel vis-à-vis the stock 
NVIDIA SDK kernel, and discuss an 
intelligent kernel switching method for the 
stream based on a degeneracy criterion that 
is adaptively computed from the input 
stream. 

I.  INTRODUCTION 
In this paper, we address the problem of 

costly atomics in histogram computation as a 
part of various software stacks[1-3]. There have 
been several previous works in literature 
examining histogram computation on GPUs. 
NVIDIA[4] proposed a method for 256-bin 
histograms wherein a distinct sub-histogram is 
maintained per warp which gives it 
9.07GBPS(Giga Bytes Per Second) throughput 
on the C1060. Shams et al[5] proposed two 
methods, the best of which performs at 11.3 
GBPS. Their first method was based on Mark 
Harris's software-simulated atomics. Their 
second method was to do an update of the 
global memory only when the shared memory 
bin overflows. Their shared memory store was 
also bit-optimized. AMD[6] described a method 
utilizing OpenGL functions that can perform a 
1024*1024 size data into a 256-bin histogram 
compute in 5.87ms. 

However, in practice, most input data is 
either too large to fit into memory or online 
computation of histogram is required. 
Therefore, for large data streams, approximate 
frequency estimation techniques have been 
studied on the GPU[7]. Although CUDA 
streams have been available, they have not been 
studied in the context of exact histogram 
computation. 

 In addition, a realistic scenario of an input 
distribution peaking at a certain value will result 
in serializing a large number of atomics if 
computed on the GPU. Therefore, we study a 
stream-based model which utilizes CPU 
compute to optimize a proposed kernel, 
Adaptive Histogram Kernel (AHist), and to 
switch to a different kernel if necessary. We 
employ the NVIDIA CUDA programming 
model for our implementation. 

II. CUDA PROGRAMMING MODEL 
NVIDIA’s Compute Unified Device 

Architecture(CUDA), provides a general 
purpose-programming model for GPUs. This 
has increased the usage of GPU’s for general 
purpose compute in addition to traditional 
visualization. The model for general purpose 
computation on the GPU is the GPU kernel. 
The GPU kernels are invoked from the CPU, 
offloading the compute intensive work onto the 
GPU. In the CUDA programming model, a 
kernel operates as a grid of thread-blocks. 

 Shared memory is a limited amount of very 
fast memory available on each SM assigned to a 
thread block. Global memory is far slower than 
shared memory and data read/write operations 
to global memory are costly and have to be 
coalesced for effective usage. However, a 
consistent issue with most GPUs and the CUDA 
programming model are the slow atomic 
operations on shared memory. For many 
practical tasks, like histogram computation, 

*Corresponding author – sisir.koppaka@acm.org, Undergraduate student at IIT Kharagpur, work 
carried out at GE Global Research during May-July, 2010. 



which are a frequent and recurring component 
of several algorithms the atomic operations end 
up serializing an enormous chunk of the 
compute resulting in a huge drop in 
performance. We examine here whether it is 
possible to use a different binning pattern in 
shared memory and additional CPU compute 
that could help in optimizing the GPU kernel 
performance by reducing the number of 
serialized atomics. A more detailed description 
of atomic operations supported by NVIDIA is 
provided in the CUDA programming guide [8]. 

III. COMPUTING HISTOGRAMS ON GPU 
Our solution consists of an adaptive kernel 

that can adapt to different data streams – for 
example, we have presented below the study of 
this kernel for the case when it has adapted to 
normally distributed data similar to X-Ray 
image streams. The second part of the solution 
is to be able to run this kernel as a CUDA 
Stream with the CPU supplying the binning 
pattern appropriately. The third part is to 
intelligently decide whether the extra compute 
is necessary and switch the naïve NVHist and 
adaptive AHist kernels based on a criterion we 
define, called the “degeneracy” of the input 
distribution. 

A. Adaptive Histogram Kernel (AHist) 
 

 
Figure 1 

 
The AHist kernel reads 256 INTs which 

contain 1024 pixels (bytes) in a packed format, 
reads in another 256 INTs which form the 
indices for the bins in the sub-histogram in the 
shared memory of length 960(the binning 
pattern, shown in Figure 1), and writes out 256 
INTs which form the partial histogram for the 
thread block. Each pixel is assumed to have a 
value between 0-255. The idea is to divide the 
atomics of a single bin in the histogram into 
multiple sub-bins to reduce their frequency of 
occurring (a divide-and-conquer approach). The 

genealogical performance of AHist on random 
input data is summarized in Table 1. 

Kernel Description Throughput 

(in GBPS) 

1 Read, Write 77.03 

2 1+Initialize LocalHist=0 76.54 

3 2 + Read binning pattern from 
global memory 

39.1 

4 3 + Compute sub-histogram 7.82 

5 4+ Sum up per bin and write 
out 

6.89 

Table 1 
 

Several alternate ways were attempted at 
reducing the impact of step 3, i.e., reading the 
indices from global memory. These ways 
included hard-coding 8 different formulae 
through if conditions, 1 thread doing all the 
compute, half a warp doing all the compute, 
using constant memory, and passing it in a 
compressed form as a parameter to the kernel. 
The best performance was observed from 
reading it directly from global memory.  

Although constant memory is faster than 
global memory, it’s limited size and the 
improved throughput of coalesced global 
memory access patterns renders constant 
memory as a second tier choice in our case. 

The second major drop occurs when we do 
atomicAdd. The extent of drop here is 5x. A 
similar drop of 10x is observed in the NVIDIA 
SDK kernel by virtue of introducing the 
atomicAdd. So the AHist kernel does help in 
reducing atomics, however, the overhead of 
obtaining the indices affects the impact of this 
reduction. 

We compare the throughputs of AHist and 
the NVIDIA SDK Histogram (NVHist) in Table 
2. 

 
Throughput 

on Input 
Data (in 
GBPS) 

Random Sequential All 
equal 

to 
127 

All 
equal 
to 1 

X-
Ray 
Data 

NVIDIA 9.07 20.23 0.45 0.45 6.46 

AHist 6.89 7.43 4.53 0.53 7.16 

Table 2 
 

The NVIDIA kernel performs faster than 
AHist for Random data and Sequential data. 
The overhead of additional calculations in 
AHist renders it slower NVIDIA for the 
Random case. This difference is particularly 



clear in the Sequential case, where AHist 
continues to suffer from additional calculations 
that are unnecessary for the given data, and 
NVIDIA benefits from a sequential pattern 
which speeds up it's atomics by reducing 
serialization and waiting times for a lock.  

In the case when all values equal 127(for 
which we have maximum number of sub-bins 
and partitioning in shared memory), AHist 
performs very well obtaining a throughput of 
4.53 GBPS versus 0.45 GBPS for NVIDIA. The 
8 sub-bins reduce the number of atomic 
operations that slow down the kernel in this 
case for AHist. When all are equal to one, 
AHist is only very slightly ahead of NVIDIA. 
This slight difference can be attributed to the 
latency hiding obtained by AHist due to it's 
additional compute, since both AHist and 
NVIDIA have only 1 sub-bin for the first bin. 

When the X-Ray data is supplied, AHist 
obtains a higher throughput than NVIDIA 
clearly showing the benefits of it's design.  

The atomic add operations on sub-bins were 
minimized by allotting the sub-bins to each 
thread in a warp cyclically to minimize 
serialized writes within a warp. The same input 
slice data was chosen for both NVIDIA and 
AHist. It was fixed at 8192 X 8192 pixels, the 
default configuration of the NVIDIA kernel.  

B. Stream Histograms  
Dynamic histograms on streaming data are 

an important component of algorithms in 
several fields. For example, many computer 
vision and image processing algorithms rely on 
computing histogram-based objective functions 
with a sliding window. They are also applicable 
in approximating fast packet streams in routers 
for the purposes of intrusion detection and 
detecting Distributed-Denial-Of-Service 
attacks. The computational costs for these are 
high, and we develop a hybrid CPU-GPU 
approach to solve this problem. 

Earlier, we noted that when all values were 
equal, AHist performed at 4.53 GB/s in 
comparison to the NVIDIA kernel at 0.45 GB/s 
for the region it was optimized for. This shows 
that AHist can be useful in distributions that 
possess temporal peaks. For example, as in a D-
DOS attack on a router/network, or in detecting 
a marked change that requires reprocessing a 
slice in an Image Processing/Computer Vision 
context. However, the nature of the stream 
might change with time from say, normally 
distributed data, to another form. Therefore, we 

might have to intermittently recompute the 
indices for the sub-histogram, on the CPU, 
based on past stream's histograms. We found 
that computing the same on the GPU led to the 
kernel slowing down, and hence the present 
hybrid CPU-GPU approach was chosen. 

For doing this, we construct two streaming 
histograms. The first is for an accumulated 
histogram, that gives us the general nature of 
the data stream. The second is a moving 
window histogram, which gives us the 
instantaneous nature of the data stream. By 
comparing them, we can detect if an attack is 
being mounted, or if there is a requirement for 
reprocessing a particular objective function in 
an image processing/computer vision algorithm. 

The Accumulator, as we call it, implements 
a pipelined method for computing an 
accumulated histogram. The MW, implements a 
moving window histogram. We also 
implemented sequential versions of both to 
compare the pipeline performance. 

 
Figure 2 

 

CUDA Streams are used for pipelining 
instructions to the GPU and CPU. CPU 
instructions like memcpy and recomputing the 
AHist indices are blocking, hence asynchronous 
instructions are relayed to the GPU and the 
CPU then carries out the blocking instructions 
for latency hiding, which is depicted in Figure 2 
as a comparison between sequential streams and 
the latency hidden version. 

The size of each chunk that is given to the 
GPU is decided by optimizing the balance 
between the compute time for the kernel and the 
PCI bandwidth manually. Sometimes, it is 
possible that an image slice, or a packet be too 
small and infrequent to demand an individual 
kernel invocation – in such cases  multiple 
slices/packets  can be batched within a single 
asynchronous call to return multiple histograms. 

In order to prevent write conflicts due to the 
asynchronous nature of the stream, we use 
double buffering for all memory read/writes on 
the CPU & GPU for the stream, and employ at 
least one cudaThreadSynchronize() per 
iteration. This ensures latency hiding within 



each iteration, and prevents the stream from 
executing an iteration's kernel calls without 
fulfilling a previous dependent iteration's calls. 

 
1 2 3 4 5 6 7 8 

R 20.28 17.68 62.01 0.02 0 100 62.15 

S 19.42 19.42 61.14 0.02 0 100 61.29 

N 19.51 17.59 62.88 0.02 0 100 63.01 

Table 3 
1. Input data type, 2. CPU Pre-Compute, 3. GPU 

Transfer, 4. GPU Compute, 5. GPU Reverse Transfer, 6. 
CPU Post-Compute, 7. Total Sequential Time, 8. Pipelined 
Time, R-Random, S-Sequential, N- Normally Distributed 
Input data Accumulator Histogram 

All values are percentages of Total Sequential Time 

On the Accumulator, we note from Table 3 
the benefit from pipelining, with the benefit 
being a 40% reduction in speed in comparison 
to a sequential version. Ideally, this would adapt 
to the state of the data stream, and normally 
distributed data is taken as an example here. 
The benefit from pipelining is also roughly 
proportional to number of streams to some 
extent, ranging from 97% for 1 stream, to 62% 
for 256 streams in general (shown in Figure 3). 

 

 
Figure 3 

 
1 2 3 4 5 6 7 8 

32 20.31 17.67 61.97 0.02 0.02 100 62.13 

128 20.26 17.67 61.94 0.02 0.11 100 62.09 

256 19.88 19.85 60.03 0.02 0.22 100 60.18 

Table 4 
1. Window Size, 2. CPU Pre-Compute, 3. GPU 

Transfer, 4. GPU Compute, 5. GPU Reverse Transfer, 6. 
CPU Post-Compute, 7. Total Sequential Time, 8. Pipelined 
Time, Moving Window Histogram 

All values are percentages of Total Sequential Time 

The MW stream algorithm was tested on 
varying window sizes(shown in Table 4) with 
the same random input data - implying that 

GPU Compute, GPU Transfer and GPU 
Reverse Transfer remain fairly constant, since 
the difference between the moving window and 
the accumulator is in the CPU post-compute 
part. 

The benefit from pipelining here was also 
noticed to be proportional to the number of 
streams, ranging from 97% for 1 stream, to 61% 
for 256 streams (shown in Figure 4). This 
benefit from pipelining reduces slightly, or 
remains constant for an increase in number of 
windows for a given number of streams. 

 
Figure 4 

 

C. Intelligent Kernel Switching 
To study the effect of atomics on the 

NVIDIA SDK kernel (NVHist) and AHist, and 
to simulate the effects of a time-variant 
distribution, we consider the combination of a 
degenerate distribution, and a random 
homogeneous distribution. A degenerate 
distribution is one where all the values in the 
distribution are equal to a single value (or lie in 
the same bin). We consider a distribution that 
consists of a degenerate distribution and a 
random homogeneous distribution in different 
ratios. In our case, the degeneracy of a given 
input distribution described above is determined 
by the percentage that consists of the degenerate 
distribution. This new distribution gives us the 
effect of the presence of the large number of 
atomics with a measure of control – the 
degeneracy.  



 
Figure 5 

We note from Figure 5 that the extra 
compute in AHist is worth carrying out only 
given the cost of a sufficient number of atomic 
operations (denoted by degeneracy percentage). 
The streaming histogram implementation 
chooses between NVHist or AHist depending 
on the last computed moving window 
histogram, and evaluating if any of the bin 
values exceed the critical degeneracy required 
(between 40-50%). 

IV. CONCLUSION 
We have described the three components of 

our solution, viz., a new AHist kernel that can 
build a local histogram based on a supplied 
binning pattern, a streaming model which uses 
AHist after aggregating sufficient data from the 
stream and then invoking the kernel, and 
finally, intelligent kernel switching between 
NVHist and AHist in the stream based on the 
criterion of input distribution degeneracy 
determined online through latency hidden CPU 
compute on the MW histogram.  

This solution can be used in situations where 
a CPU is usually available along with the GPU. 
We use the CPU to optimize a specific kernel 
(AHist), and also to switch to a different kernel 
(NVHist) once certain predetermined input 
distribution bounds are crossed. This feedback 
loop is implemented as a CUDA Stream, and 
latency hiding makes this model competitive to 
traditional one-kernel-does-it-all models. In 
practice, either most data is too large to fit in a 

GPU’s memory, or online computation on the 
data is necessary. For both these cases, our 
model can be used effectively. 

The possibility of switching criterion based 
on constraints other than degeneracy of the 
input distribution remains, and further studies 
are necessary to evaluate and compare various 
switching criterion. For example, combining 
degeneracy criterion with criterion that evaluate 
the amount of serialization possible by latency 
hidden rearrangement of data to the maximum 
extent possible can be explored. 

ACKNOWLEDGMENT 
S.K. would like to thank Dr. Srikanth 

Rajagopalan, GE Global Research and JFWTC 
for giving him the opportunity to carry out this 
work at their facility. 

REFERENCES 
[1] Shams, Ramtin; Barnes, Nick. (2007), Speeding up 

Mutual Information Computation Using NVIDIA 
CUDA Hardware, Digital Image Computing 
Techniques and Applications, 9th Biennial 
Conference of the Australian Pattern Recognition 
Society, 555-560, 3-5 Dec. 2007 

[2] Sinha, S., Frahm, J.-M., Pollefeys, M., & Genc, Y. 
(2007), Feature tracking and matching in video using 
programmable graphics hardware, Machine Vision 
and Applications, Springer-Verlag, DOI 
10.1007/s00138-007-0105-7  

[3] Han, S., Jang, K., Park, K., and Moon, S. (2010), 
PacketShader: a GPU-accelerated software 
router. SIGCOMM Comput. Commun. Rev. 40, 4 
(Aug. 2010), 195-206.  

[4] Victor Podlozhnyuk, Histogram Calculation in 
CUDA, NVIDIA(2007) 

[5] R. Shams and R. A. Kennedy, Efficient histogram 
algorithms for NVIDIA CUDA compatible devices. 
In ICSPCS(2007) 

[6] Thorsten Scheuermann and Justin Hensley, Efficient 
Histogram Generation Using Scattering on GPUs, In 
I3D ’07: Proceedings of the 2007 Symposium on 
Interactive 3D Graphics and Games, pages 33–37, 
New York, NY, USA, 2007. ACM. 

[7] Govindaraju, N. K., Raghuvanshi, N., and Manocha, 
D., Fast and approximate stream mining of quantiles 
and frequencies using graphics processors. 
In Proceedings of the 2005 ACM SIGMOD 
International Conference on Management of 
Data (Baltimore, Maryland, June 14 - 16, 2005). 
SIGMOD '05. ACM, New York, NY, 611-622.  

[8] NVIDIA, NVIDIA CUDA, Programming Guide, v. 
3.0, NVIDIA (2010)

 


