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Abstract—Data centers, now a days, typically deploy
monitoring agents to collect various performance metrics
across several data center components. An important first
step in this respect is to arrive at a set of monitoring
metrics and the level or frequency of monitoring. Mon-
itoring each and every metric at a high frequency (e.g.
every second), would produce very large size of monitoring
logs. Storing as well as analyzing such logs pose many
challenges. That apart, there is a high probability that
certain interesting data would get buried under very large
data-sets and escape critical analysis. On the other hand,
monitoring a few metrics at a low frequency aggravates the
risk of losing important information relating to events of
interest. In this paper, we propose a novel approach to ap-
ply probing-based adaptation of the monitoring tools. We
present algorithms to analyze probe performance which
enable us to derive monitoring recommendations. We
compare traditional monitoring with adaptive monitoring,
and show that the latter method significantly decreases
the volume of monitoring data, without loosing those
pertaining to interesting events.

I. I NTRODUCTION

The continuous evolving nature of today’s data centers
has led to their incremental and unplanned growth.
As a result, the data center operators lack a complete
understanding of the underlying system behaviour. The
problem is aggravated further with increasing number
of performance critical applications relying on services
of these data centers. Therefore, data centers need to
be continuously monitored for various metrics such
as performance, capacity, etc. The data collected from
such monitoring are then analyzed to diagnose and heal
performance and capacity problemswhile maintaining
seamless uninterrupted data services.

Various tools and techniques have been proposed
for monitoring the operations of data centers. These
techniques can be broadly classified under two: (i)
component-level passive monitoring-based techniques,

and (ii) end-to-end probing-based techniques. The pas-
sive monitoring techniques typically involve deployment
of agents (eg., Tivolli, Nagios) at each machine to
periodically collect various performance metrics such
as CPU utilization, page faults, etc. While the tools
based on passive monitoring focus on individual com-
ponent, the probing-based tools compute the end-to-end
metrics such as latency, throughput, etc. Probing-based
tools [5], [1], [6] send test transactions (such as pings,
HTTP requests, etc.) through the system and analyze
their performance. Most of the earlier work in using
both passive monitoring [3], [2] as well as probing has
been in isolation. In this paper, we argue that these
techniques can be used in combination to leverage each-
other’s effectiveness. Our primary focus here is on using
probing to improve the effectiveness of monitoring tools.
We believe that similar solutions can be built for the
other case of using monitoring information to improve
probing.

Monitoring tools provide a sufficient and rich amount
of information about the behaviour of a server. These
tools provide various metrics ranging from per-processor
performance metrics, to network traffic metrics, to
application-level performance metrics. The tools also
have provisions to allow selection of monitoring metrics
and the frequency of monitoring. However, one of the
biggest problems faced by the data center operators is
making a decision on what metrics to monitor at what
time? Monitoring all the metrics at a very high fre-
quency (e.g. every second) produces enormous amount
of monitoring logs. Storing as well as analyzing such
logs pose several challenges. Furthermore, interesting
data tends to get buried in such large data-sets and
may possibly escape careful analysis. On the other hand,
monitoring very few metrics at a low frequency incurs
the risk of losing important information and events of
interest. In the rest of paper, we use the termmonitoring



Fig. 1. An example data center.

level to refer to the aggressiveness of monitoring. A low
monitoring level refers to monitoring fewer metrics at
a low frequency. A high monitoring level, on the other
hand, refers to monitoring of large number of metrics at
a high frequency.

In this paper, we argue that the information ob-
tained through probes can be used to address the above
concerns and improve the effectiveness of per-machine
monitoring. The end-to-end metrics collected by a probe
are an indicative of the likely health of the components
serving the request. Hence, a probe result can be used
to set the appropriate monitoring levels of these com-
ponents. Consider an example data-center of an equity
trading plant (Figure 1) where several requests for equity
trades and the market updates are processed each day.
Each request passes through several processing steps
using various components. An increase in the end-to-
end latency of serving a particular request (request 4 in
Figure 1) is a likely indication of performance problem
at one or more components serving the request. Further-
more, different requests demand different resources, e.g.,
CPU intensive requests, IO intensive requests, database
intensive requests, etc. Thus, a poorly performing request
can provide insights into the health of not just the
component but also the specific resources within the
component. In this paper, we exploit this observation
and propose an adaptive-monitoring solution where we
use the information from probe results to set monitoring
levels of individual components in the data-center.

Various challenges need to be addressed in order to
build such a solution. For instance, how to select probes?
How to analyze various metrics obtained from probe
results to derive a recommendation for monitoring level
? How to compute a monitoring-level for a component
from the monitoring recommendation obtained from
multiple probes? How frequently should the monitoring-
levels be changed?

The key contributions of this paper are as follows:

• A novel adaptive monitoring algorithm that uses

end-to-end probe for deriving monitoring levels of
individual components.

• An experimental evaluation to demonstrate that the
generated monitoring data (through the above adap-
tive monitoring algorithm) successfully captures all
interesting properties while retaining a significantly
low volume monitoring data.

II. D ESIGN RATIONALE

Building a solution for adaptive monitoring involves
following four major steps:

1) Selection of probes::An important initial problem
to address is the selection of right set of probes. Probes
can be ongoing system transactions or customized syn-
thetic traffic. The probes should be selected such that
the monitoring recommendations can be provided to all
components of interest by analyzing the probe results. A
lot of earlier work on probing can be useful in addressing
this problem.

2) Analysis of probe performance::An important step
of adaptive monitoring is the analysis of the probe per-
formance metrics. Adaptive monitoring requires analysis
of these end-to-end metrics to infer the health of various
components serving the probe. The analysis needs to
capture various events such as sudden changes, gradual
changes, and deviation from the normal behavior.

3) Deriving monitoring recommendations from probe
performance:: The analysis of end-to-end metrics pro-
vides insights into component health. This analysis thus
provides enough indication on criticality of monitoring a
specific component. These insights need to be translated
to monitoring levels.

4) Setting monitoring levels::Once the monitoring
recommendations are derived, the monitoring agents at
the component need to be re-tuned to the new monitoring
level. The solution for this step makes various decisions
such as: how frequently should the monitoring levels be
changed? Monitoring levels of which set of components
should be changed together?, etc.

This paper primarily focuses on step 2 and 3. For
clarity, we make simplistic assumptions that the probe
selection is done using domain knowledge. We present
algorithms for analysis of probe results and mapping
end-to-end probe analysis to component-level monitoring
recommendations.

III. PROPOSEDAPPROACH

For the sake of clarity, let us first examine a simple
scenario where only a single probe is sent through the
system and a single end-to-end metric is collected. After



explaining the details of the algorithm, we address the
complex case where multiple such probes are analyzed.
Suppose, for example, a probe passes through three
components and the end-to-end latency of the probe is
measured. All components are equipped with monitoring
agents that monitor resources such as CPU utilization,
memory, page faults, database calls, file IO time, etc.

A. Analysis of probe results

Step 1- Aggregation of probe results: To avoid respond-
ing to noise and transient fluctuations in the collected
end-to-end metric, we remove outliers and aggregate the
end-to-end metrics by computing the mean of all values
collected over a time windoww. Thus, over a period of
time, a time-seriesT of the end-to-end metric is built,
where each pointTi in this time-series is aggregated over
a time-windoww. We use the standard sliding window
mechanism where the active window slides over time
and windows overlap each other. Later on, we present
heuristics to dynamically change the window size and
the amount of window overlap.
Step 2- Compute the deviation from the normal behavior:
The presence of abnormal behavior in the end-to-end
metric is evaluated next. The expected value for the end-
to-end metric can be obtained using domain knowledge
(e.g., SLAs) or by analyzing historical data. Keeping the
expected normal values as the benchmark, we analyze
if the observed value deviates from the expected normal
behavior. Given the normal value to beTnor and the
observed value to beTcur, the deviation of the observed
value from the normal behavior is computed as follows:

Dev(Tcur) = abs(Tcur − Tnor) (1)

Step 3 - Compute the rate of change: The rate of change
provides insights into the severity of the change and
the likely future values of the metric. For instance, the
rate of change can differentiate between a linear increase
and an exponential increase in the latency. Also, it can
differentiate a scenario of 50% increase from a 5%
increase in latency. Given the valueTcur observed in
current time window and the valueTprev observed in
previous time window, we compute the rate of change
as follows:

Rate(Tcur) = abs(Tcur − Tprev)/Tprev (2)

B. Deriving monitoring recommendations

The analysis performed on the end-to-end metrics of a
probe then needs to be mapped to a recommended mon-
itoring level. A rule-book approach is proposed to map

the two metricsDev(Tcur) andRate(Tcur) to the moni-
toring levelsML(Dev(Tcur)) andML(Rate(Tcur)) re-
spectively. The domain knowledge and standard practices
along with an analysis of historical data can be used
to build such rule-books. In addition to this, learning
mechanisms can be used to adjust the rule-book settings
over time. We do not discuss further details of rule-
book creation due to lack of space. We compute the
monitoring level for a time windowTcur based on
rule-book recommendations and monitoring level of the
previous time windowTprev. The monitoring level is
then calculated as follows:

ML(Tcur) = ML(Tprev) + (ML(Dev(Tcur))±ML(Rate(Tcur)))/2
(3)

where, the addition or the subtraction of
ML(Rate(Tcur)) depends whether rate of change
is negative or positive. Note that by incorporating the
previous monitoring level in the computation of next
monitoring level, we build monitoring levels on the
previous decisions. Instead of analyzing the full history
of the probe performance, the most recent monitoring
level provides best representation of the past inferences.

C. Adjustment of the window of probe result analysis

The standard sliding window mechanism has been
used to construct time-windows. The collected end-
to-end metric values are aggregated over these time-
windows. There are two metrics to be considered here: (i)
the size of the time-window, (ii) the amount of overlap
of the current window with the previous window. The
size of the time-window controls frequency of analyzing
the probes to compute monitoring recommendations. The
amount of overlap controls the extent of historical data
to be used while deriving monitoring recommendations.
For the problem of adaptive monitoring we propose to
dynamically change the window size and amount of
overlap using the following heuristics.

A probe observing a steady behavior need not be
checked very frequently for adjusting the monitoring lev-
els of components through which it passes. Furthermore,
in such scenario, the consecutive windows tend to be
similar in nature. Hence, if the monitoring level ofk
consecutive time-windows is observed to be same, then
the window size of(k+1) time-window is increased and
overlap is decreased. We propose to increase the window
size in an additive manner to ensure a conservative
increase. We propose to decrease the amount of overlap
in a subtractive manner.

On the other hand, if the probe observes a fluctuating
behaviour, the monitoring levels need to be tuned in



a more cautious manner. If the monitoring levels of
k consecutive time-windows observe changes, then the
time-window is decreased. To act quickly to changes
we propose to decrease window size in an aggressive
manner by performing a multiplicative decrease. In such
scenario, the amount of overlap is kept high to resist
noise. We propose to increase the amount of overlap in
an additive manner.

D. Addressing multi-path scenario

As a component can serve more than one probe, We
next present our approach to incorporate multiple mon-
itoring level recommendations to derive a consolidated
recommendation.

Different probes being served by the component may
provide different monitoring recommendations. How-
ever, the confidence in the monitoring recommendation
provided by a probe can be computed based on the length
of the probe. When a componentC is served byk probes,
we assign a weight to the monitoring recommendation
of each probe. The weight is inversely proportional to
the length of the probe. We then compute a weighted
average of the recommendations to derive a consolidated
recommendation.

Consider a scenario where 3 probes pass through a
nodeN . The number of nodes on these probes are 10,
5, and 2 and the monitoring level recommendations of
these probes are 2, 3, and 5 respectively. The monitoring
level for nodeN is then derived as follows:

ML(N) = (1/10 ∗ 2) + (1/5 ∗ 3) + (1/2 ∗ 5) = 3.3 (4)

IV. EXPERIMENTATION AND RESULTS

In this section we present an experimental evaluation
to demonstrate the correctness of the proposed approach.

A. Effectiveness in capturing changes and steady states

Figure 2 presents various scenarios of changes and
the steady states in the end-to-end latency time-series.
Figure 2 also shows the derived monitoring levels for
each of the time-series. The rate of increase in the end-to-
end latency is higher in Figure 2(a) than in Figure 2(b).
This property is correctly captured and reflected in the
computed monitoring levels. Figure 2(c) shows another
case where the end-to-end latency shows a periodic
behavior of an increase followed by a decrease. The
monitoring levels in Figure 2(c) show that an increase in
latency is quickly captured resulting in a quick increase
in monitoring levels. The algorithm also effectively cap-
tures the normal behavior of the probe and decreases the
monitoring level on observing normal values.

Fig. 2. Different scenarios of variations observed in end-to-end
latency and the corresponding derived monitoring level recommen-
dations.

B. Comparison of traditional monitoring and adaptive
monitoring

We now compare the traditional monitoring and the
adaptive monitoring under two criteria: (i) amount of
monitoring data collected, (ii) accuracy of analysis. We
simulated a three-tier data center using CSIM [4]. The
topology consists of 6 servers S0 through S5. We mod-
elled each server and its resource using the Machine
Repairman Model. At each server we collect four re-
source utilization metrics namely, database lock time,
CPU utilization, available memory, and disk write time
referred to as R0, R1, R2, and R3 respectively. In the
case of traditional monitoring, these metrics are collected
every 3 seconds. In the case of adaptive monitoring,
the frequency of metric collection varies depending on
the monitoring level recommendations. We generated
end-to-end probes through the data center and collected
probe results to analyze end-to-end performance. We
next present the results of two very common analysis
operations namelyfault localizationandheadroom anal-
ysis. Through these experiments we demonstrate that
adaptive monitoring collects significantly less amount
of monitoring data than traditional monitoring while
maintaining the accuracy levels of traditional monitoring.

1) Fault Localization: In this experiment, the moni-
toring logs are used to perform fault localization. Mul-
tiple faults are inserted into the system (increase in
database lock time R0 of Server S0 and Server S3,
referred to as S0R0 and S3R0 hereafter). These faults
result in increase in end-to-end latency. Figure 3(a) and
Figure 3(b) present the data collected by traditional and
adaptive monitoring respectively along with the observed
end-to-end latency. The sudden increase in the values
represent the failure regions. The number of data points
collected by traditional monitoring was 1602 while that
collected by adaptive monitoring was only 164. It can be
seen from Figure 3(c) that even though the data points
collected by adaptive monitoring is almost 10% of that of
traditional monitoring, the former successfully captures
all interesting events captured by the latter monitoring



Fig. 3. (a, b, c) Traditional monitoring, adaptive monitoring and statistics for fault localization. (d, e, f) Traditional monitoring, adaptive
monitoring and statistics for headroom analysis.

and removes redundant data.
We use a standard technique for fault localization

based on event correlation. We compute correlation
coefficient of all resource metrics with end-to-end la-
tency. The metrics with very high correlation-coefficient
are reported as likely causes. While more sophisticated
techniques have been presented in literature, we use this
technique to demonstrate the proof of the concept. As
shown in Figure 3(c), both adaptive as well as traditional
monitoring correctly identify the inserted failures as the
likely causes. The adaptive monitoring, thus, builds a
monitoring log that is 10% the size of the log built using
the traditional monitoring, without compromising on the
accuracy of the fault localization analysis.

2) Headroom analysis:In the next experiment, we
use the monitoring logs to compute the resource head-
room. The headroom of a resource represents the amount
of available resource and the workload that can be
supported by that resource. We build regression models
between workload and resource utilization using moni-
toring logs obtained from both traditional monitoring and
adaptive monitoring. Figure 3(d) and Figure 3(e) show
the model built using traditional monitoring and adaptive
monitoring respectively. Figure 3(f) shows the equation
of the linear models. It can be seen that the models and
capacity estimation are very similar for the two logs.
Adaptive monitoring thus significantly reduces data log
size (252 vs. 2881) without compromising on the model
accuracy.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to use
probing-based solutions to adapt the monitoring tools.
We present algorithms to analyze the performance of
probes. We present the techniques to derive monitor-
ing recommendations from the analysis of probes. We

present a comparison of the traditional monitoring with
adaptive monitoring on the basis of (i) amount of data
collected and (ii) accuracy of analysis performed on the
logs generated by the two logs. We demonstrate that
adaptive monitoring significantly decreases the volume
of collected monitoring data, without loosing any inter-
esting events.

Our future plans include addressing various issues
such as (i) automatic building of rule-book , (ii) giving
user to choose probes, etc. We also plan to evaluate the
proposed approach by deployment of a prototype tool on
a real-world data center. Like adaptive monitoring, we
also plan to explore the possibility of adaptive probing to
improve the end-to-end probing solutions based on the
insights obtained from component monitoring.
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