
Global Sequence Alignment using CUDA
compatible multi-core GPU

T. R. P. Siriwardena & D. N. Ranasinghe
University of Colombo School of Computing, Sri Lanka

ranga.prasa@gmail.com, dnr@ucsc.cmb.ac.lk

Abstract—The GPU has become a competitive general
purpose computational hardware platform in the last
few years. Recent improvements in GPUs highly parallel
programming capabilities such as CUDA has lead to a
variety of complex applications with tremendous per-
formance improvements. Genetic Sequence alignment
is considered to be one of the application domains
which require further improvements in the execution
speed, because it is a computationally intensive task with
increased database size. We focus on using the massively
parallel architecture of GPU as a solution for the im-
provement of sequence alignment task. For that purpose
we have implemented a CUDA based heterogeneous
solution for the global sequence alignment task with
Needleman-Wunsch dynamic programming algorithm.
We have compared different levels of memory access
patterns to identify better parallelization strategy with
different ways of kernel access and thread utilization
methods.

I. INTRODUCTION

Sequence alignment of genetic databases is con-
sidered to be a very common and essential task
in the field of Bio-Informatics. Similarities between
sequences are mostly obtained with maximum sensi-
tivity using optimal alignment approach. Needleman-
Wunsch algorithm [1] for global alignment and Smith-
Waterman algorithm [2] for local alignment are
widely used dynamic programming based approaches
for that purpose. But the growth of database size
increase the time required for searching using this
kind of dynamic programming approaches [5].

Heuristic methods such as FASTA and BLAST
[3] are implemented as a solution for this issue
and shows that they are up to 40 times faster than
the normal CPU based implementation of Smith-
Waterman algorithm for local alignment. Even though
this CPU based solution such as FASTA and BLAST
are somewhat efficient and faster, still they are time
consuming and take considerable amount of time for
sequence database searching.

Over the past few years GPU (Graphics Processing
Unit) have become competitive computing hardware
against the CPU (Central Processing Unit) because
of its increased performance and capabilities. Recent
improvements of GPU’s highly parallel programming
capabilities such as CUDA [8] have lead to the

T. R. P. Siriwardena is a student of the University Of Colombo
School Of Computing and following the Bachelor degree in Com-
puter Science.

mapping of wide variety of complex application with
tremendous performance improvements. This is called
General Purpose Computation on Graphics Processor
(GPGPU) [6] and this feature leads GPU to the next
generation of high performance computing.

However GPU programmers still having lot of
barriers, when using GPU as a general purpose com-
putational processor because these chips are spe-
cially designed for game development. Still the GPU
programming models are unusual, the programming
environment is tightly constrained and the underlying
architectures are largely secret. Because of these bar-
riers porting code written for the CPU to the GPU is
not a straightforward task. But with the introduction of
Compute Unified Device Architecture (CUDA) there
emerged a great solution for this problem and it
provides an extension of the C language with high
level interface, to the programmer.

In recent years there were number of attempts to
improve performance of local alignment using Smith-
Waterman algorithm with CUDA [4]. These research
evidently proved that CUDA compatible GPU cards
are now advanced enough to be considered as efficient
hardware based accelerators for sequence alignment
task using dynamic programming approaches with
greatest sensitivity and are allowing normal PCs to
do alignment tasks. Also these implementations out-
perform the CPU based local alignment solutions such
as BLAST.

Even though global sequence alignment is consid-
ered to be the most resource consuming and compu-
tationally intensive task than local alignment, there
are fewer research works on the global alignment
task with CUDA. “A Performance Study of General-
Purpose Applications on Graphics Processors Using
CUDA” [11], demonstrates a dynamic programming
based sequence alignment approach with the use of
CUDA, where they have mentioned that their imple-
mentation is up to 2.9 times faster than the single
threaded CPU based implementation.

The main focus of this research work is to evaluate
the efficiency of CUDA compatible GPU cards for
the implementation of global sequence alignment with
Needleman-Wunsch algorithm with different levels
of memory access strategies. Firstly we evaluate the
global memory based non-blocking strategy and then
we evaluate the shared memory and global memory



combined blocking strategy. With these strategies we
identify an efficient way of use, per-thread local
memory, per-block shared memory and the global
memory.

CUDA performance is compared against its CPU
based serial version with varying lengths of se-
quences. We also compare GPU based implementa-
tions against each other and have identified better
memory access strategies among them.

Rest of this paper is organized as follows. First
few section of the paper describes Needleman-wunsch
algorithm and the design of the parallel algorithm.
Then we describe our implementation, experimental
setup, the set of evaluation results and the conclusion.

II. NEEDLEMAN-WUNSCH (NW) ALGORITHM

Sequence similarity searching between biological
macromolecules is considered to be a ubiquitous good
in molecular biology. Today comparative sequence
analysis is highly used to understand genomes, RNA’s
and proteins. In practice finding the optimal alignment
between two sequences can be a computationally
demanding task. Dynamic Programming (DP) pro-
vides possible solutions for this. DP makes sequence
alignment task tractable as long as we follow few rules
[9].

NW algorithm [1] is considered to be one of the
widely used global sequence alignment algorithms
based on dynamic programming. In this algorithm,
alignment takes place in a two-dimensional matrix in
which each cell relates to the pairing of one letter
from each sequence. Each cell of the matrix holds
two values: a score and pointer. Score is derived from
a scoring schema and the pointer is a directional
navigator that points left, up or diagonal. The align-
ment begins from the upper left and follows a mostly
diagonal path down and to the right. An important
feature related to the global alignment is every letter
of each sequence is aligned to a letter or a gap. NW
algorithm consists of three steps as below.

1) Initialization: The first row and column is ini-
tialized with a score. The score is set to the gap score
multiplied by the distance from the origin. Pointer
of each cell is point back to the origin because
It is considered to be a requirement for the global
alignment which guarantees that alignments go all the
way back to the origin.

2) Fill: All cells in the matrix are filled with a
scores and a pointer. To find the score of a cell H(i,j)
we find the maximum value among three scores: a
match score, a vertical gap score and a horizontal gap
score Fig. reffig:fill1. The match score is the sum of
the diagonal cell score and the score for a match. The
horizontal gap score is the sum of the cell to the left
and the gap score . Also the vertical gap score is the
sum of the cell to the up and the gap score.

Fig. 1. Finding the score of H(i,j)

Fig. 2. Heterogeneous computing model with GPU

3) Trace-Back: Simply recovers the alignment
from the matrix. Recovery process starts from the
bottom-right corner and follow the pointer until get in
to the beginning. In this case we are following from
end to start and because of that alignment will be
backward.

III. ALGORITHMS

GPU computing allows general purpose computing
on GPU together with CPU. This heterogeneous com-
puting model allows executing the serial part of the
program on the CPU and computationally intensive
part on the GPU as shown in fig. 2.

When considering about each step of the algorithm
the fill step is the most computationally intensive
part and because of this reason parallel execution of
fill step will cause to speed-up the whole algorithm.
Our main focus is to explore parallelism with fill
step and allow it to execute inside GPU. Initialization
and Trace-Back steps will execute as a serial fraction
without any involvement of GPU.

A. Parallelism inside the NW algorithm

As described in the Fill step of the NW algorithm
when calculating the score of a cell it needs to know
the values on its left, upper and upper-left cells [4]
as depicted in the fig. 3. This dependency makes it
harder for parallel execution of the algorithm. But the
Fill step of the algorithm shows a pattern for parallel
execution as shown in the fig. 4. According to that
pattern, scores of all cells on each minor-diagonal are
independent from each other. Because of this reason,
all cells on each minor-diagonal can be computed in
parallel [4].

B. Fill Step with blocking strategy

In order to achieve better performance from CUDA
based NW alignment algorithm it should be important
to have an efficient memory access pattern. So we



Fig. 3. Data dependency of NW algorithm

Fig. 4. Pattern of parallelism of NW algorithm

Fig. 5. Fill step with blocking strategy

have to concentrate on efficient use of per-thread local
memory, per-block shared memory, constant memory
and the global memory. And also the amount of
communication between main memory and device
memory should be minimized.

When considering about efficient memory access
patterns blocking can be considered as a good strategy
with CUDA. One of the solutions based on blocking
is to use a minor-diagonal-wise blocking strategy [11]
as shown in the fig 5. Two levels of of parallelism can
be identified with this strategy as bellow.

• parallelism with threads within a single block
• parallelism among several blocks

IV. IMPLEMENTATION

A. NW parallelization with global Memory access

Firstly we concentrated on NW based parallel im-
plementation which uses the global memory of GPU.
Initialization and Trace-Back steps execute as CPU
code and the Fill step is computed after invoking
the GPU. Here we used the parallelism with minor-
diagonals. With this implementation the CPU is re-

sponsible for the minor diagonal management and
GPU only concentrates on the calculating the assigned
cells.

Here the access to minor diagonals is managed by
the host (CPU). Also copying the required data from
host to device and device to host is managed by the
host. In addition to score matrixes two sequences and
their lengths are needed to copy from host to device
before invoking the kernel.

With the host based minor-diagonal management
the CUDA kernel doed not need to have extra thread
synchronizations. The device only needs to calculate
assigned minor diagonal in parallel way. With our
kernel implementation, to fill a cell, all memory read
and write operations are dealt with the global memory.

B. NW parallelization with shared Memory access

In the next step we concentrated on NW based par-
allel implementation which is based on the blocking
strategy. With this we use both global and shared
memory of the GPU and main intention is to im-
prove the global memory based implementation with
efficient use of on chip shared memory. Here we
select blocks in each minor diagonal for parallel
computation.

Then the device calculates its assigned blocks in
parallel. With our implementation firstly, threads ini-
tialize the shared memory block using the values in
global memory. Then threads are involved to calculate
block in minor-diagonal-wise cell pattern inside the
block. Here it uses thread synchronization explicitly
to guarantee and order calculation of minor-diagonals.
After the block is filled it copies the result from shared
memory to global memory in parallel. Throughout
the implementation thread synchronization barriers
should carefully used to avoid data conflicts inside
the CUDA kernel.

V. EXPERIMENTAL SETUP AND HARDWARE
CONFIGURATION

All the experiments were conducted on a PC with
a 2.4 GHz Intel Quad Core processor, 3GB RAM and
running Linux OS. A single Nvidia GeForce 8800 GT
GPU was plugged to this PC and this GPU has 512MB
graphics memory. GPU consists of 114 cores and
16KB of shared memory per block. Nvidia Graphics
driver version 2.3 was installed for getting CUDA
compatibility.

VI. EVALUATION AND DISCUSSION

In this section we discuss the evaluation results and
some discussion based on those results.

A. Results

1) Global memory based implementation : Here
we evaluated the original NW implementation which
is based on global memory access. We compared the
execution time for the computationally intensive fill



Fig. 6. Execution time comparison of CPU based implementation
and GPU-Global memory based implementation

Fig. 7. Execution time comparison of CPU based implementation
and GPU-Shared memory based implementation

step of the algorithm in two aspects. They are CPU
based implementation and GPU based implementa-
tion. With this evaluation we did not compare the
initialization and trace-back steps because both of the
implementations use the same serial execution and
they are not intensive as much as fill step. Fig. 6 shows
the performance derived from those implementations.

2) Shared memory based implementation : Block-
ing strategy based implementation is the next level
of implementation and it uses shared memory and
global memory combined approach. Main concern
was to use the on chip shared memory to reduce the
global memory access cost as much as possible. This
implementation was compared against CPU based im-
plementation and the output of comparison is shown
in fig. 7.

Then we measured the performance of this shared
memory based implementation with various block
sizes and various sequence lengths. Fig. 8 shows
the output for various block size of shared memory
allocation.

3) Global memory vs Shared memory: After the
comparison with CPU based implementation both of
the global and shared memory based implementations
were compared. Fig. 9 shows the execution time for
both implementations.

Fig. 8. Execution time comparison of GPU-Shared memory based
implementation with various shared memory block size

Fig. 9. Execution time comparison of GPU-Global memory based
implementation and GPU-Shared memory based implementation

B. Discussion

Even though CUDA allows us to execute programs
by launching hundreds of light weight threads, the
amount of performance improvement we can obtain
depends on the design of parallel algorithm. Efficient
use of CUDA memory levels requires rethink of
the algorithm. Only using device memory which is
implemented with dynamic random access memory
(DRAM), without efficient use of other memory levels
may lead to poor performance. The reason for this
poor performance is the device memory’s long access
latencies and finite access bandwidth.

According to the fig. 6 it is very clear that even with
the use with device memory the algorithm achieves
better performance than the CPU based serial im-
plementation. We compared the performance of two
counter parts for varying lengths of sequences and
identified that for longer sequences, CUDA based
implementation provides better performance in its
execution.

From the shared memory based implementation we
further tried to improve the performance of algorithm
with efficient use of shared memory. But that’s where
we have to focus on memory limitations of CUDA
memory architecture. With CUDA, global memory
is large but slow and shared memory is fast but



Fig. 10. Execution time comparison of CPU based implementa-
tion, GPU-Global memory based implementation and GPU-Shared
memory based implementation

small. To deal with this tradeoff data partitioning
as blocks was used and calculation of fill matrix as
performed in block wise pattern. Fig. 7 shows the
further performance improvement achieved for the
NW algorithm.

Fig. 9 depicts the difference between device mem-
ory based and shared memory based implementations.
It is very clear that with the use of faster shared
memory the performance of algorithm further im-
proves and fig. 10 shows the summary of performance
comparisons between all implementations.

CUDA provides a limited amount of memory and
programmer must be careful not to exceed those
memory limits. These memory capacities are appli-
cation dependent. And also CUDA limits the number
of registers which can be use by a single thread.
Over use of this registers may lead to reduction
of amount of concurrent threads within a streaming
multiprocessor(SM).

With our implementation we have identified that the
largest shared memory block size we can obtain is 44
x 44. When we exceed this amount, nvcc compiler
notifies about the over usage of shared resources. We
measured the fill step execution time for various size
of shared memory blocks and its result is shown in
fig. 8. According to the result it is very clear that,
performance of the algorithm increases with larger
block sizes. And also the performance improvement
from the block size of 8 x 8 do not show a big differ-
ence so the amount of computation is good enough to
avoid the performance hit of extra computations and
communication between shared memory and global
memory.

Final observation regarding the analysis is to iden-
tify the capability of using GPU as a platform for the
global sequence alignment task. When looking at the
obtained results, there is no doubt that GPU offers a
better solution for the global sequence alignment task
even though it does not produce superior speed up
like general matrix multiplication problem. We can
conclude that even with data dependent algorithms,
GPU is offers better performance with proper parallel

algorithm design.

VII. CONCLUSION

In this research we used the massively parallel
architecture of GPU as a solution for the global se-
quence alignment with the support of CUDA. Though
the Dynamic programming based NW algorithm has
low data parallelism the parallelism inside the minor-
diagonal wise strips can be used with non-blocking
and blocking strategies. For the non-blocking strategy
we achieves up to 2 times speed up and with blocking
we achieves up to 4.2 times speed up compared to
the CPU based implementation. For data dependant
applications there are ways to achieve better perfor-
mance with different approaches in parallel applica-
tion design with use of massively parallel architecture.
Even though GPU based global sequence alignment
algorithm implementations do not yield superior per-
formance as much as data independent applications,
they are still good enough to outperform the process-
ing capabilities of CPU based implementation.

REFERENCES

[1] S. B. Needleman and C. D. Wunsch, ”A general method
applicable to the search for similarities in the amino acid
sequence of two proteins,” Journal of molecular biology, vol.
48, no. 3, pp. 443-453, March 1970. [Online]. Available:
http://view.ncbi.nlm.nih.gov/pubmed/5420325

[2] T. F. Smith and M. S. Waterman, ”Identification of
common molecular subsequences,” Journal of Molecular
Biology, vol. 147, pp. 195-197, 1981. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.71
42

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D.
J. Lipman, ”Basic local alignment search tool,” Journal of
molecular biology, vol. 215, no. 3, pp. 403-410, October 1990.

[4] S. A. Manavski and G. Ville, ”CUDA compatible GPU
cards as efficient hardware accelerators for Smith-Waterman
sequence alignment,” BMC Bioinformatics, March 2008.

[5] W. Liu, B. Schmidt, G. Voss, A. Schroder and W.
Muller-Wittig, ”Bio-Sequence database scanning on a GPU,”
Nanyanga Technological University, Singapore, 2006.

[6] J. D. Owens, M. Huston, D. Luebke, S. Green, J. E. Stone
and J. C. Phillips, ”GPU computing,” University of California,
Davis, May 2008.

[7] Y. Liu, D. Maskell, and B. Schmidt, ”Cudasw++: op-
timizing smith-waterman sequence database searches for
cuda-enabled graphics processing units,” BMC Research
Notes, vol. 2, no. 1, pp. 73+, 2009. [Online]. Available:
http://dx.doi.org/10.1186/1756-0500-2-73

[8] NVIDIA CUDA Programming Guide Version 2.3.1, 2009.
[9] I. Korf, M. Yandell, and J. Bedell, Blast. O’Reilly

Media, Inc., June 2003. [Online]. Available:
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0596002998

[10] D. B. Kirk and W.-m. W. Hwu, Programming Massively
Parallel Processors: A Hands-on Approach, 1st ed.
Morgan Kaufmann, February 2010. [Online]. Available:
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0123814723

[11] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K.
Skadron. A performance study of general-purpose applica-
tions on graphics processors using cuda. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.
4849


