
HiPC’2010 Student Research Symposium

D2C: Deterministic, Deadlock-free Concurrency
Nalini Vasudevan∗, Stephen A. Edwards

Columbia University, New York

naliniv, sedwards@cs.columbia.edu

Julian Dolby, Vijay Saraswat

IBM Research, Hawthorne

dolby, vsaraswa@us.ibm.com

Abstract

The advent of multicore processors has made con-
current programming languages mandatory. However,
most concurrent programming models come with two
major pitfalls: non-determinism and deadlocks. By de-
terminism, we mean the output behavior of the program
is independent of the scheduling choices (e.g., the oper-
ating system) and depends only on the input behavior.
A few concurrent programming models provide deter-
ministic behavior by providing constructs that impose
additional synchronization, but the improper (or the out
of order) use of these constructs leads to problems like
deadlocks.

In this paper, we argue for both determinism and
deadlock-freedom and provide a deterministic, deadlock-
free concurrent model. The model can be implemented
either as programming language constructs or as a li-
brary. Any program that uses this model is guaranteed
to produce the same output for a given input. Addition-
ally, the program will never deadlock: the program will
either terminate or run for ever.

1. Introduction

Non-deterministic functional behavior arising from
timing variability is one of the biggest problems of
concurrent programming. The program in Figure 1 is
non-deterministic. It uses Cilk[1]-like syntax. It creates
two tasksf andg in parallel using thespawnconstruct.
Clearly, x is getting modified concurrently by both the
tasks, so the value printed by this program is either 3 or
5 depending on the schedule.

Such non-determinism makes debugging all but im-
possible because unwanted behavior is rarely repro-
ducible. Re-running a non-deterministic program on
the same input usually does not produce the same be-
havior. We agree with Bocchino et al. [8] that the pro-

∗Student Author

1 void f(shared int a) {
2 a = 3;
3 }
4
5 void g(shared int b) {
6 b = 5;
7 }
8
9 main() {

10 shared int x = 1;
11 spawn f(x)
12 spawn g(x);
13 sync; /∗ Wait for f and g to finish∗/
14 print x;
15 }

Figure 1. A non-deterministic parallel program

gramming environment should ensure input-output de-
terminism.

A few languages provide determinism through their
semantics. They provide determinism by providing ad-
ditional synchronization constructs. SHIM [6] for ex-
ample provides determinism by special constructs, but
these constructs can be used in such a way that a pro-
gram in SHIM may deadlock. StreamIt [12] is another
programming language that is explicitly deterministic
but is suitable only for streaming applications and is a
strict subset of SHIM.

In this paper, we propose a more flexible determin-
istic model, that can be either implemented as a lan-
guage, programming language constructs or a library.
The model is also deadlock-free: the synchronization
is in such a way that any program that uses this model
will never deadlock.

2. Approach

Non-determinism arises primarily due to read-write
and write-write conflicts. In theD2C model, we al-
low multiple tasks to write to a shared variable con-

Deterministic, Deadlock-free Concurrency 1 2010/10/26



1 void f(shared int &a) {
2 /∗ a is 1∗/
3 a = 3;
4 /∗ a is 3 , x is still 1∗/
5 next; /∗ The reduction operator is applied∗/
6 /∗ a is now 8, x is 8∗/
7 }
8
9 void g(shared int &b) {

10 /∗ b is 1∗/
11 b = 5;
12 /∗ b is 5, x is still 1∗/
13 next; /∗ The reduction operator is applied∗/
14 /∗ b is now 8, x is 8∗/
15 }
16
17 void h(shared int &c) {
18 /∗ c is 1 , x is still 1∗/
19 next;
20 /∗ c is now 8, x is 8∗/
21 }
22
23 main() {
24 shared int (+) x = 1;
25 /∗ If there are multiple writers, reduce
26 using the + reduction operator∗/
27 spawn f(x);
28 spawn g(x);
29 spawn h(x);
30 sync;
31 /∗ x is 8∗/
32 }

Figure 2. A D2C program

currently, but we define a commutative, associative re-
duction operator that will operate on these writes.

The program in Figure 2 creates three tasks in paral-
lel f , g andh. f andg are modifyingx. For simplicity,
we have used Cilk[1]-like syntax. Even thoughf and
g are modifyingx concurrently,f sees the effect ofg
only when it executesnext. Similarly g sees the effect
of f only when it executesnext. When a task executes
next, it waits for all tasks that share variables with it, to
also executenext. Thenext statement is like a barrier.
At this statement, the shared variables are reduced us-
ing the reduction operator. In the example in Figure 2,
the reduction operator is+ because x is declared with
a reduction operator+ in line 24. Therefore after the
next statement, the value ofx is 3 + 5 which is 8 and
it is reflected everywhere. Functionh also rendezvous
with f andg by executingnext and thus it obtains the
new value 8.

It is also possible tonot define a reduction operator
on a shared variable. Then, the first task among the
spawned process (in program source order) overwrites
the value. For example, in Figure 2, if the declaration
of x in line 24 is int x rather thanint (+) x, then x’s
value afternextwill be the value written byf (x) which
is 3. This is becausef (x) is the first concurrent process
that is spawned.

Thenextsynchronization statement is deadlock free.
We do not give a formal proof here due to lack of space,
but it follows from the fact that thenextstatement is a
conjunctive barrier on all shared variables. On contrast,
other deterministic concurrent models like SHIM are
not deadlock free. Also, they do not allow multiple
tasks to write to a shared variable because they provide
ownership to variables.

3. Implementation

We implemented our model in the X10 program-
ming language [4]. X10 is a parallel, distributed object-
oriented language. To a Java-like sequential core it adds
constructs for concurrency and distribution through the
concepts of activities and places. An activity is a unit
of work, like a thread in Java; a place is a logical entity
that contains both activities and data objects. X10 uses
the Cilk model of task parallelism and a task scheduler
similar to that of Cilk.

Our preliminary implementation is as follows. We
did a very conservative analysis to check if a particu-
lar shared variable is being used by multiple tasks. If
yes, we force the variable to be shared with a reduc-
tion operator. This forces race-freedom. Otherwise, the
compiler throws an error.

Each thread maintains a copy of the shared variable.
A thread always reads from or writes to its local copy.
Whenever thenextstatement is called, all threads shar-
ing the variable synchronize. The last thread to syn-
chronize does a linear reduction of the local copies us-
ing the commutative, associative operator in the vari-
able declaration. It then updates the local copies with
the new value.

4. Results

We ran a number of examples on a 2.33 GHz Intel
Core 2 Duo with 2GB memory. Figure 3 shows the
results. We measured the deterministic implementation
of the applications with the original implementation. A

Deterministic, Deadlock-free Concurrency 2 2010/10/26



 0

 1

 2

 3

A
llR

ed
uc

eP
ar

al
le

l

P
ip

el
in

e

C
on

vo
lv

e

N
Q

ue
en

sP
ar

M
on

ty
P

iP
ar

al
le

l

K
M

ea
ns

S
ca

la
r

H
is

to
gr

am

M
er

ge
S

or
t

S
tr

ea
m

P
re

fix

U
T

S

ID
E

A

S
te

nc
il

S
O

R

S
er

ie
s

R
ay

T
ra

ce

LU
F

ac
t

S
pa

rs
eM

at
M

ul

R
el

at
iv

e 
S

pe
ed

Application

Determinized
Original

Figure 3. Experimental Results

bar with value below 1 indicates that the deterministic
version ran slower than the original version.

The AllReduce Example is a parallel tree based
implementation of reduction. The Pipeline example
passes data through a number of intermediate stages;
at each stage the data is processed and passed on to the
next stage. Convolve is an application of the Pipeline
program.

The N-Queens Problem finds the number of ways in
which N queens can be placed on an N*N chessboard
such that none of them attack each other. The MontiPi
application finds the value ofπ using MonteCarlo sim-
ulation. The K-Means program partitions n data points
into k clusters concurrently.

The Histogram program sorts an array into buckets
based on the elements of the array. The Merge Sort
program sorts an array of integers. The Prefix example
operates on an array and the resulting array is obtained
from the sum of the elements in the original array up to
its index.

The SOR, IDEA, RayTrace, LUFact, SparseMatMul
and Series programs are JGF benchmarks. The Ray-
tracer benchmarks renders an image of sixty spheres. It
has data dependent array access.

The SOR example performs Jacobi successive relax-
ation on a grid; it continuously updates a location of the

grid based on the location’s neighbors. The Stencil pro-
gram is the 1-D version of the SOR.

The LUFact application transforms an N*N matrix
into upper triangular form. The Series benchmark com-
putes the first N coefficients of the functionf (x) =
(x+1)x. The IDEA benchmark performs International
Data Encryption algorithm (IDEA) encryption and de-
cryption on an array of bytes. The SparseMatMul pro-
gram performs multiplication of two sparse matrices.

The UTS benchmark [9] performing an exhaustive
search on an unbalanced tree. It counts the number of
nodes in the implicitly constructed tree that is parame-
terized in shape, depth, size, and imbalance.

For most of the examples, the deterministic version
had a performance degradation of 1% - 25% as ex-
pected. However, for some examples like SOR and
Stencil, the deterministic version performed better.
The original version of these examples had explicit
2-phased barriers to differentiate between reads and
writes, while the deterministic version requires just a
single phase, because we maintain a local copy in each
thread to eliminate read-write conflicts. Hence, the de-
terministic version performed better.

Deterministic, Deadlock-free Concurrency 3 2010/10/26



5. Related Work

There are a number of tools that provide deter-
minism. For example, in the absence of data races,
Kendo [10] ensures a deterministic order of all lock
acquisitions for a given program input. However, if
we have the sequencelock(A); lock (B);by one thread
and lock(B); lock(A);by another thread, the determin-
istic ordering of locks could still lead to a deadlock.
DMP [5] uses a deterministic token that is passed
around all threads. A thread to modify a shared vari-
able must first wait for the token and for all threads
to block on that token. There is a lot of runtime over-
head. Our method, although not discussed here, does
a significant part of the work at compile time. Burmin
and Sen [3] provide a framework for checking deter-
minism for multithreaded programs. Their tool does
not guarantee determinism because it is merely a test-
ing tool that checks the execution trace with previously
executed traces to see if the values match.

A few programming models provide explicit deter-
minism. We have already discussed StreamIt [12] and
SHIM [6]. Synchronous programming languages like
Esterel are completely deterministic but they are highly
restricted and are best suited for hardware systems.

Finally, type and effect systems like DPJ [2] have
been designed for deterministic parallel programming.
However, in general, type systems require the program-
mer to manually annotate the program. Our design does
not require explicit annotation but provides restrictions
through its constructs. One may argue for the need to
learn a new programming paradigm or language, but
we have done some work [17] to show that a model
like this can be implemented as a library.

6. Conclusions and Future Work

We have presented a deterministic, deadlock free
model. We have a proof (not shown here) that formu-
lates this hypothesis. We have added these features as
constructs to the X10 programming language. We also
plan implement it as a library. A number of examples fit
into this model: Histogram, Convolution, UTS, Sparse
Matrix Multiplication etc.

Prior to this work, we designed compilers [7, 14] that
generate deterministic code for shared-memory multi-
cores and heterogeneous machines. We have also im-
plemented a deterministic concurrent library [13] for
the Haskell language. But these pieces of work were on
SHIM, a model that is not guaranteed to be deadlock-

free. So, we designed run-time [16] and static [13, 11]
checkers to detect deadlocks at compile time. TheD2C
model is a variant that provides deadlock-free deter-
minism, and no special checkers are needed to detect
deadlocks.

As future work, we plan to allow user defined re-
duction operators in our language. We therefore require
a mechanism to check for associativity and commuta-
tivity of these operators. Secondly, we would like to
use static analysis to improve the run-time efficiency of
these constructs. Thirdly, we would like to implement
this as a library, and check the program to see if it does
not override the deterministic library. Next, we would
like to build a determinizing tool [15] like Kendo [10]
and [5] based onD2C.

Our ultimate goal is efficient concurrency with de-
terminism and deadlock-freedom. D2C will introduce a
way of bug-free parallel programming that will enable
programmers to shift easily from sequential to parallel
worlds and this will be a necessary step along the way
to pervasive parallelism in programming.

Acknowledgement

I thank Stephen Edwards (Columbia University), Vi-
jay Saraswat (IBM Research) and Julian Dolby (IBM
Research) for contributing to parts of the work. The
research was mainly supported by IBM Research and
partly by NSF (grant 0614799).

References

[1] Robert D. Blumofe, Christopher F. Joerg, Bradley C.
Kuszmaul, Charles E. Leiserson, Keith H. Randall, and
Yuli Zhou. Cilk: An efficient multithreaded runtime
system. InProceedings of Principles and Practice of
Parallel Programming (PPoPP), pages 207–216, Santa
Barbara, California, July 1995.

[2] Robert L. Bocchino, Jr., Vikram S. Adve, Danny
Dig, Sarita V. Adve, Stephen Heumann, Rakesh
Komuravelli, Jeffrey Overbey, Patrick Simmons,
Hyojin Sung, and Mohsen Vakilian. A type and effect
system for deterministic parallel java. InOOPSLA ’09:
Proceeding of the 24th ACM SIGPLAN conference on
Object oriented programming systems languages and
applications, pages 97–116, New York, NY, USA,
2009. ACM.

[3] Jacob Burnim and Koushik Sen. Asserting and check-
ing determinism for multithreaded programs. InES-
EC/FSE ’09: Proceedings of the 7th joint meeting of
the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of soft-

Deterministic, Deadlock-free Concurrency 4 2010/10/26



ware engineering on European software engineering
conference and foundations of software engineering
symposium, pages 3–12, New York, NY, USA, 2009.
ACM.

[4] Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. X10: an
object-oriented approach to non-uniform cluster com-
puting. SIGPLAN Not., 40(10):519–538, 2005.

[5] Joseph Devietti, Brandon Lucia, Luis Ceze, and
Mark Oskin. Dmp: deterministic shared memory
multiprocessing. InASPLOS, pages 85–96. ACM,
2009.

[6] Stephen A. Edwards and Olivier Tardieu. SHIM: A
deterministic model for heterogeneous embedded sys-
tems. InProceedings of the International Conference
on Embedded Software (Emsoft), pages 37–44, Jersey
City, New Jersey, September 2005.

[7] Stephen A. Edwards, Nalini Vasudevan, and Olivier
Tardieu. Programming shared memory multiproces-
sors with deterministic message-passing concurrency:
Compiling SHIM to Pthreads. InProceedings of De-
sign, Automation, and Test in Europe (DATE), pages
1498–1503, Munich, Germany, March 2008.

[8] Robert L. Bocchino Jr., Vikram S. Adve, Sarita V.
Adve, and Marc Snir. Parallel programming must be
deterministic by default. InHOTPAR ’09: USENIX
Workshop on Hot Topics in Parallelism, March 2009.

[9] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James
Dinan, P. Sadayappan, and Chau-Wen Tseng. Uts: An
unbalanced tree search benchmark. InLCPC, pages
235–250, 2006.

[10] Marek Olszewski, Jason Ansel, and Saman Amaras-
inghe. Kendo: efficient deterministic multithreading
in software. InProceedings of the International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
97–108, New York, NY, USA, 2009. ACM.

[11] Baolin Shao, Nalini Vasudevan, and Stephen A.
Edwards. Compositional deadlock detection for
rendezvous communication. InProceedings of the
International Conference on Embedded Software
(Emsoft), pages 59–66, Grenoble, France, October
2009.

[12] W. Thies, M. Karczmarek, M. Gordon, D. Maze,
J. Wong, H. Ho, M. Brown, and S. Amarasinghe.
StreamIt: A compiler for streaming applications,
December 2001. MIT-LCS Technical Memo TM-622,
Cambridge, MA.

[13] Nalini Vasudevan and Stephen A. Edwards. Static
deadlock detection for the SHIM concurrent language.

In Proceedings of the International Conference on
Formal Methods and Models for Codesign (MEM-
OCODE), pages 49–58, Anaheim, California, June
2008.

[14] Nalini Vasudevan and Stephen A. Edwards. Celling
SHIM: Compiling deterministic concurrency to a
heterogeneous multicore. InProceedings of the
Symposium on Applied Computing (SAC), volume III,
pages 1626–1631, Honolulu, Hawaii, March 2009.

[15] Nalini Vasudevan and Stephen A. Edwards. A
determinizing compiler. InProgramming Languages
Design and Implementation (PLDI) - Fun Ideas and
Thoughts Session, Dublin, Ireland, June 2009.

[16] Nalini Vasudevan and Stephen A. Edwards. Determin-
ism should ensure deadlock-freedom. InProceedings
of the 2nd USENIX Workshop on Hot Topics in Paral-
lelism (HotPar), Berkeley, California, June 2010.

[17] Nalini Vasudevan, Satnam Singh, and Stephen A. Ed-
wards. A deterministic multi-way rendezvous library
for Haskell. InProceedings of the International Par-
allel and Distributed Processing Symposium (IPDPS),
pages 1–12, Miami, Florida, April 2008.

Deterministic, Deadlock-free Concurrency 5 2010/10/26


