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Abstract—Process migration is the act of transferring a 

process between two computers. If used effectively, 

process migration could be used to improve the 

throughput of a cluster of computers. To perform this, a 

process must be migrated from a "slow" system to a 

"fast" system. To measure the "fastness" of a system, 

various parameters must be considered, such as the 

current load of the system, the time slices expected to be 

given to a new process, and the speed of the hardware.  

In our system, named Kappa, the various parameters are 

aggregated together to form the system metric of a system. 

This metric is then used to determine which computer the 

process should be migrated to. In order to perform this, 

load balancing needs to be performed. Load Balancing in 

Kappa is performed in a peer-2-peer network in two 

steps: An initial approximation stage, and a probing stage. 

In the approximation stage, a rough measure of the 

distribution of the system metric is calculated within the 

cluster. In the probing stage, the initial information 

collected is used to direct a probe across the network to 

find the optimal target for load balancing. The actual 

process migration takes places transparently once the 

target machine is found. 

Kappa was implemented in Linux, and allows for 

transparent process migration between paired Linux 

computers. It is implemented as a user-space program, 

with minimal hooks in the system calls. Kappa was tested 

for a cluster of Linux computers with varying system 

metric, and an improvement of 50% to 200% in execution 

time was recorded for CPU intensive processes. 

Keywords- linux, process migration, two stage load 

balancing, system performance, peer to peer 

I.  INTRODUCTION 

The future of computing lies in the field of High 
Performance Computing. Cluster Computing techniques 
have proven to improve the throughput of a cluster of 
computers. But even though we see advances in the high 
performance computing field, we also see that these 
advances have not trickled down to home users. Systems 
such as MOSIX have not gained popularity amongst 
home users for a variety of reasons. One such reason is 
the change in usability of the system. SSI (Single 

System Image) based techniques ask for a radical shift 
in the operation of computers. 

We aim to bridge the gap between high-performance 
computing and home users by creating a system which 
utilizes the power of distributing tasks across a cluster, 
while maintaining the usability of single-user machines. 
To achieve this, it is not possible to keep processor 
scheduling and resource allocation as shared decisions. 
Thus, a collaborative means to allow processes to 
execute within the cluster must be made. 

Kappa tries to bridge this gap between high-
performance computing and home users. 

II. TERMINOLOGY AND DEFINITIONS 

 System Metric: A relative approximate measure 
of the execution time of a process executing 
within a system.  

 Distribution Metric: A relative measure of the 
time to migrate a process and complete its 
execution on a remote system 

 Probing: Sending a probe message along a 
directed path until a system with suitable 
distribution metric is found  

 Transparent process migration: Process 
migration that requires no change of existing 
programs to utilize the facility. 

III. SURVEY OF EXISTING SYSTEMS 

A study of existing systems for process migration 
was done. The systems studied were Mosix, Sprite, 
Mach, and LSF/Condor. A comparison of the features of 
these systems are listed in Table I 

TABLE I.  COMPARISON OF FEATURES OF EXISTING SYSTEMS 

 

Characteristi

cs 

Existing Systems 

Mosix Sprite Mach LSF/Cond

or 

Initial 

Migration 

time 

Moderate moderate Low Low 

Residual None None Yes None 
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dependency 

Residual time 

and costs 

None Moderate High None 

Freeze cost Moderate Moderate Small Moderate 

Freeze time Moderate Moderate Low Moderate 

Transparency Full Full Full Limited 

decentralizati

on 

Distribut

ed 

Centraliz

ed 

Distribute

d 

centralized 

Fault 

resilience 

Yes Limited No yes 

Knowledge 

relevance 

Aging Periodic Negotiati

on 

none 

 

Observations: We see that the systems that were 
discussed have their own characteristics and goals. We 
see that the following goals are not the focus of these 
systems: 

 Implementation of a popular platform: Systems 
such as MOSIX and Sprite are implemented on 
the Unix operating system. We see that these 
systems are not geared towards more popular 
commercial platforms. Mach is a microkernel in 
itself, while LSF and Condor aren’t full-fledged 
process migration solutions 

 Maintaining “single-user” interface: The 
MOSIX and Sprite systems are both based on a 
SSI architecture, in which a distributed system 
is identified as a single entity. The Mach system 
partially gears towards SSI. LSF and Condor are 
libraries, which don’t offer an integrated 
solution. Using these systems would mean users 
must get accustomed to a new environment of 
execution. 

 Non-preemptive process migration: The systems 
that were discussed use a check pointing 
mechanism to store the state of a process before 
it is migrated. This would mean an additional 
overhead to understand the process state, and to 
send it across a network, and to resume it on the 
target system. We could reduce this overhead by 
allowing non-preemptive process migration. 
While this may reduce the amount of task 
migration, it would also reduce the overhead 
with the migration. 

IV. DESIGN 

Kappa performs four main tasks to carry out peer-2-
peer load balancing and process migration: 

 Analysis of System Metric 

 Preliminary information gathering (for load 
balancing) 

  Probing 

  Process Migration 

A. System Metric Determination 

The system metric is a relative measure of how fast a 
system is expected to finish execution of a process since 
the time it has been created on that system. The system 
metric is composed of two parts: (a) Performance of 
hardware (b) Current System Load 

1) Performance of the CPU 
To measure the CPU performance, two methods can 

be applied: (a) Measurement of the various parameters 
(b) Benchmarking. For Kappa, we used standard tools 
for benchmarking the CPU performance. This is 
because: (a) It is not always possible to determine 
programmatically the various parameters of the 
processor, (b) It is not always possible to quantify the 
measurement of a certain parameter. For eg. The 
memory architecture, branch prediction schemes, etc. 
cannot be directly quantified without a context, (c) 
There exist benchmarking standards which accurately 
measure the performance of the processor. 

To test the CPU performance, the SPEC CPU2006 
was chosen. However, since we need a relative and 
approximate measure of the CPU performance, the 
SPEC2006 was subsetted[9] using PCA and k-clustering 
to give four benchmark programs: sjeng(), gcc(), 
libquantum() and xalan(). Since the CPU2006 suite is 
not freely available, the programs were individually 
downloaded from their respective sites and tested on the 
platform. The workloads supplied to these benchmarks 
were also reduced such that the benchmarks finish 
execution under a minute. 

Each benchmark is run on the system, and the result 
of each benchmarked can be summarized as: 

(1) 

All these results can then be combined to form a 
metric which represents the hardware performance of 
the system:  

                 (2) 

2) Measuring System Load 
To measure the system load, tools such as vmstat, 

top, and mpstat were analyzed under various system 
loads. The various indicators of the system load are: (a) 
The number of time slices spent idling, (b) The expected 
number of time slices to be assigned to a new process 
(c) The amount of free memory 

The measurements are taken every five seconds from 
/dev/proc. A significant measure of the speed of 
execution of a process is the number of time slices that 
the process is assigned. Thus, the initial load is 
determined by the number of time slices that a process is 
expected to be assigned. This can be approximated from 
the number of time slices spent idling, as well as the 
number of time slices that were spent by the user 
processes. The initial system metric is determined by (3) 
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 (3) 

The effect of memory and memory faults becomes 
relevant only when there is a shortage in memory. Thus, 
we account for the memory only when the free memory 
available becomes less than a threshold. 

 (4) 

 

3) Distribution Metric 
The performance of the hardware is checked at the 

time of a reboot of the computer. The metric collected 
by static measurements of the system by using 
benchmarks is denoted by Sysmetricstatic. Meanwhile, the 
system load is measured at regular intervals. The final 
system metric is then a weighted combination of these 
two metrics: 

(5) 

The distribution metric is a measure of time required 
between sending a process to a remote system, and it 
returning the results back to the host system. Thus, the 
distribution metric includes the overhead involved in 
migrating a process, along with the system metric of the 
remote system 

                      (6) 

B. Preliminary Information Gathering 

This stage involves gathering information about the 
current system load that exists over a network. Since we 
aim towards a peer-2-peer architecture, notifying each 
system in the cluster would lead to increased overhead. 
Hence an approximate algorithm was used for this step. 
The aims of this algorithm were: (a) Scalability and (b) 
Minimum overhead 

The foundation of the algorithm was the hierarchical 
load balancing algorithm. In hierarchical load balancing, 
the nodes in the cluster are arranged in the form of a tree 
and load balancing is performed from parent to child. To 
extend this algorithm, a Directed Acyclic Graph was 
chosen to replace the tree, with appropriate 
modifications made to the algorithm. While this 
modified algorithm successfully demonstrated various 
properties that were useful for the algorithm, embedding 
a directed acyclic graph within the cluster in a 
distributed way impaired the scalability of this 
algorithm, and modifications to this algorithm were 
required. This algorithm is given in algorithm I 

Algorithm I: Preliminary Information Gathering 

Procedure: Init_measurements() 

1. Calculate system metric of system.  

2. Assign send_probe = the system metric 

3. Send send_probe to all neighbors of the current system 

4. Set max_dist = 0 

5. Set rec_time = Current system time 

6. If ((current system time) - rec_time) > delay, then go to step 

9 

7. For each neighbor i: 

a. Get a message from i containing send_probe(i) 

b. Set dist_metric(i) = send_probe(i) - constant_overhead 

c. if dist_metric(i) > max_dist, assign max_dist = 

dist_metric(i) 

8. Go to step 6 

9. Get current system metric 

10. If current system metric > max_dist, set send_probe = 

current system metric. Else, set send_probe = max_dist 

11. Go to step 3 

 

In algorithm I, the cluster is represented by a simple 
undirected graph. Each system in the cluster corresponds 
to a single vertex in the graph. A system can be linked 
with another system by using a pairing procedure. Each 
paired link between two systems can be represented by 
an edge in the graph. When a new system wishes to join 
a cluster, it must know one system that is present in the 
cluster. This can directly pair with the new system, 
without informing its neighbors. Similarly, when a 
system wishes to be removed from the cluster, it simply 
unpairs all its neighbors. 

 Initially, a system in the cluster sets it send_metric 
variable to its current system metric. It then sends this 
value to all its neighbors, and then waits for a fixed 
period of time. During this time, the system acquires the 
send_metric of all its neighbors. To this value, the 
system deducts a constant overhead to give the 
distribution metric of each neighbor system. It then 
checks the neighbor with the maximum distribution 
metric, and stores this value in max_dist. Periodically, 
the system will check its own system metric. It then 
finds the maximum of the current system metric and 
max_dist, and stores this in send_metric. The system 
then sends the send_metric to all its neighboring 
systems. This procedure proceeds until the system is 
removed from the cluster. 

This algorithm has the following characteristics: 

 Linear complexity: Each machine in the cluster 
performs the algorithm in worst case O(n). 

 Convergence: The values of the metrics never 
converge. The distance of a system from another 
system is proportional to how relevant the 
information about the current load is. 

 Assumption: The algorithm works effectively 
only when the increase in load of a system is 
gradual. If the increase in loading of machines is 
expected to be more sudden, then the various 
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parameters of the algorithm, can be modified. 
We see that reducing these parameters, would 
improve handling of more sudden load changes, 
but would induce higher overheads. 

 Coherence: The algorithm uses the value of 
system metric taken at regular intervals of time. 
Hence, it is possible to have a system which has 
a system metric much higher than the value of 
distribution metric stored in its neighbor (and 
consequently, the one that is transferred by the 
neighbor). However, by ensuring the delay 
added in every step is high enough, such a 
scenario could be avoided. 

C. Probing 

Probing is the procedure to find the exact node to 
which a process must be migrated to before the process 
migration. The aims of probing are: (a) to get the node 
with the optimal load, to handle the process execution 
and (b) to allow for the transitivity property to hold: A 
process may be transferred from a source node to a 
destination node, where the source and destination need 
not necessarily be directly paired. 

Unlike the hierarchical load balancing algorithm 
which worked on timely pings, the probe algorithm is a 
sender-initiated strategy. The Probe message is sent just 
before the process is going to start executing, to find an 
appropriate destination node to deliver the process to. 
The probing algorithm uses two kinds of messages: 
Probe requests and probe replies. 

A probe message can be represented as P(i,j,k) 
where i is the system requesting the probing request, j is 
the system that is sending the message to the system k. 
Similarly, the probe reply can be represented as PR(k,i, 
sysmetricK) which is sent from the system k to the 
system i which initiated the probing with sysmetricK 
being the current system metric of system K. 

The algorithm can be divided into three parts: The 
probe sending, probe propagation, and probe reply 

The probe sending algorithm is given in II: 

Algorithm II: Sending Probe 

Procedure: Send_probe() 

1. Get the current system metric, and compare it with highest 

distribution metric of the neighbor.  

2. If the current system metric is greater, then execute the 

process locally on the system itself. 

3. If the highest distribution metric of the neighbor is higher, 

then first get the neighbor. 

4. Send a probe message to the neighbor. 

5. Wait for a reply. If a reply arrives, store it. 

 

The probe propagation and reply steps are given in 
algorithm III: 

Algorithm III: Propagation of Probe 

Procedure: propagate_probe() 

1. Consider that node K receives the probe P(I, J, K). 

2. Check if the current system metric is greater than the 

distribution metric obtained from any neighbor.  

3. If the system metric of K is higher, then send back Probe 

reply PR(K, I, sys_metricK). Go to end. 

4. If the system metric is lower, get the neighbor with the 

highest distribution metric. Let this neighbor be M. 

5. Send the probe P(I, K, M) to the neighbor M. End 

 

D. Process Migration 

Process migration can be carried out either 
preemptively and non-preemptively. In non-preemptive 
process migration, a process is migration only at its 
creation. Preemptive process migration allows processes 
which are already executing, to be migrated. Kappa uses 
the non-preemptive process migration strategy. This is 
because of the following: 

 Additional overhead of saving the state of a 
process before it is migrated.  

 Additional overhead of setting up the same state 
of the process after migration. 

 The bookkeeping involved with preemptive 
process migration is higher. 

Thus, a non-preemptive strategy was chosen. 

V. RESULTS 

Kappa was tested with a few preliminary programs 
under various conditions of the CPU 

A. System Load 

To implement the system, systems A and B were 
chosen, such that A was loaded with 4 processes while 
B was idling. The programs were run on A. We see that 
the system metric of A varied from 35 to 45. On the 
other hand, B’s system metric varied from 140 to 150. 
When these metrics were distributed in the 2

nd
 step, the 

preliminary information gathering, it was found that: 
distmetricB on A varied from 125 to 135, while 
distmetricA on B varied from 20 to 30. 

When the process is about to migrate, a probe 
message is sent from A to B, since distmetricB > 
sysmetricA. This probe message was received and 
replied to by B since B contains no neighbors with 
distmetric higher than sysmetricB. B sends a probe 
message PR(B, A, 142), where the sysmetricB varies, 
back to A. The effect of process migration on the 
execution times(in microseconds) of the various 
processes is given in Figure 1. 
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Figure 1. Results: System Load Change 

The results can be summarized in Table III 

TABLE II.  RESULTS OF PROCESS MIGRATION 

 

Proces

s 

Sysmetr

icA 

Sysmetr

icB 

Dismetr

icB on A 

Dismetr

icA on B 

Exec. 

Time 

(ms) 

Brute 

Force 

37 

 

148 133 22 2288 

Expon

entiat

e 

35 144 129 20 3697 

Prime 42 
 

145 130 27 2741 

Hello

World 

37 141 126 22 3176 

 

B. Load Balancing 

To test the load balancing performance, three 
systems, A, B and C, were chosen. B was paired with 
both A and C. A and B were loaded with five processes 
each, while C was left idling. Then infinite loop 
processes were created in A to see the effect of 
increasing the load. The results (and comments) are 
listed in Table IV. 

TABLE III.  EFFECT OF INCREASING LOAD 

 

Process No. Result Comment 

1 No migration 
 

The probe reply wasn’t 
received before the 

process ran  

2 Migrated to System C.  After 2 “delays” to pass 
for convergence.  

3-7 Migrated to System C 

 

Fork and execve 

separated by some 

jumps to allow probe 
replies to arrive.  

8-9 No Migration The System C load is 

higher than System B, 
but B’s cache is not 

updated. Probe reply 

finds out that migration 
is not needed 

10 Migrated to System B System B has the least 

load 

 

VI. CONCLUSIONS AND FURTHER SCOPE 

Kappa successfully improved the overall system 
performance by effective load balancing and process 
migration. Results show an improvement of around 90% 
for CPU intensive applications. We see that the load 
balancing scheme is scalable, efficient, and without a 
central point of failure. 

Kappa can be easily incorporated in a system. It 
allows transparent process migration, and hence no 
changes to programs are necessary to utilize the process 
migration facility. The system also does not modify the 
usability of the system, since it seamlessly integrates 
into the system. Hence, we see that Kappa bridges the 
gap between Home computing and cluster computing. 

A few improvements that could be introduced to the 
system are: 

 Higher piggybacking of commands between 
migrated process and stub and use of Migratable 
Sockets for migrated processes 

 Preprocessing of ELF string table and 
estimation of the files required by the process, 
so it could be sent along with the process. 

 Preprocessing a process to determine if it is 
CPU and IO intensive, and accordingly migrate 
process 
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