
Gaurav Mogre, Avinash H

Kappa: A system for Linux P2P Load Balancing

and Transparent Process Migration

Gaurav Mogre

NITK

Surathkal, India

gaurav.mogre@gmail.com

Avinash Hanumanthappa

NITK

Surathkal, India

avinash947@gmail.com

Alwyn Roshan Pais

NITK

Surathkal, India

alwyn@nitk.ac.in

Abstract—Process migration is the act of transferring a

process between two computers. If used effectively,

process migration could be used to improve the

throughput of a cluster of computers. To perform this, a

process must be migrated from a "slow" system to a

"fast" system. To measure the "fastness" of a system,

various parameters must be considered, such as the

current load of the system, the time slices expected to be

given to a new process, and the speed of the hardware.

In our system, named Kappa, the various parameters are

aggregated together to form the system metric of a system.

This metric is then used to determine which computer the

process should be migrated to. In order to perform this,

load balancing needs to be performed. Load Balancing in

Kappa is performed in a peer-2-peer network in two

steps: An initial approximation stage, and a probing stage.

In the approximation stage, a rough measure of the

distribution of the system metric is calculated within the

cluster. In the probing stage, the initial information

collected is used to direct a probe across the network to

find the optimal target for load balancing. The actual

process migration takes places transparently once the

target machine is found.

Kappa was implemented in Linux, and allows for

transparent process migration between paired Linux

computers. It is implemented as a user-space program,

with minimal hooks in the system calls. Kappa was tested

for a cluster of Linux computers with varying system

metric, and an improvement of 50% to 200% in execution

time was recorded for CPU intensive processes.

Keywords- linux, process migration, two stage load

balancing, system performance, peer to peer

I. INTRODUCTION

The future of computing lies in the field of High
Performance Computing. Cluster Computing techniques
have proven to improve the throughput of a cluster of
computers. But even though we see advances in the high
performance computing field, we also see that these
advances have not trickled down to home users. Systems
such as MOSIX have not gained popularity amongst
home users for a variety of reasons. One such reason is
the change in usability of the system. SSI (Single

System Image) based techniques ask for a radical shift
in the operation of computers.

We aim to bridge the gap between high-performance
computing and home users by creating a system which
utilizes the power of distributing tasks across a cluster,
while maintaining the usability of single-user machines.
To achieve this, it is not possible to keep processor
scheduling and resource allocation as shared decisions.
Thus, a collaborative means to allow processes to
execute within the cluster must be made.

Kappa tries to bridge this gap between high-
performance computing and home users.

II. TERMINOLOGY AND DEFINITIONS

 System Metric: A relative approximate measure
of the execution time of a process executing
within a system.

 Distribution Metric: A relative measure of the
time to migrate a process and complete its
execution on a remote system

 Probing: Sending a probe message along a
directed path until a system with suitable
distribution metric is found

 Transparent process migration: Process
migration that requires no change of existing
programs to utilize the facility.

III. SURVEY OF EXISTING SYSTEMS

A study of existing systems for process migration
was done. The systems studied were Mosix, Sprite,
Mach, and LSF/Condor. A comparison of the features of
these systems are listed in Table I

TABLE I. COMPARISON OF FEATURES OF EXISTING SYSTEMS

Characteristi

cs

Existing Systems

Mosix Sprite Mach LSF/Cond

or

Initial

Migration

time

Moderate moderate Low Low

Residual None None Yes None

Gaurav Mogre, Avinash H

dependency

Residual time

and costs

None Moderate High None

Freeze cost Moderate Moderate Small Moderate

Freeze time Moderate Moderate Low Moderate

Transparency Full Full Full Limited

decentralizati

on

Distribut

ed

Centraliz

ed

Distribute

d

centralized

Fault

resilience

Yes Limited No yes

Knowledge

relevance

Aging Periodic Negotiati

on

none

Observations: We see that the systems that were
discussed have their own characteristics and goals. We
see that the following goals are not the focus of these
systems:

 Implementation of a popular platform: Systems
such as MOSIX and Sprite are implemented on
the Unix operating system. We see that these
systems are not geared towards more popular
commercial platforms. Mach is a microkernel in
itself, while LSF and Condor aren’t full-fledged
process migration solutions

 Maintaining “single-user” interface: The
MOSIX and Sprite systems are both based on a
SSI architecture, in which a distributed system
is identified as a single entity. The Mach system
partially gears towards SSI. LSF and Condor are
libraries, which don’t offer an integrated
solution. Using these systems would mean users
must get accustomed to a new environment of
execution.

 Non-preemptive process migration: The systems
that were discussed use a check pointing
mechanism to store the state of a process before
it is migrated. This would mean an additional
overhead to understand the process state, and to
send it across a network, and to resume it on the
target system. We could reduce this overhead by
allowing non-preemptive process migration.
While this may reduce the amount of task
migration, it would also reduce the overhead
with the migration.

IV. DESIGN

Kappa performs four main tasks to carry out peer-2-
peer load balancing and process migration:

 Analysis of System Metric

 Preliminary information gathering (for load
balancing)

 Probing

 Process Migration

A. System Metric Determination

The system metric is a relative measure of how fast a
system is expected to finish execution of a process since
the time it has been created on that system. The system
metric is composed of two parts: (a) Performance of
hardware (b) Current System Load

1) Performance of the CPU
To measure the CPU performance, two methods can

be applied: (a) Measurement of the various parameters
(b) Benchmarking. For Kappa, we used standard tools
for benchmarking the CPU performance. This is
because: (a) It is not always possible to determine
programmatically the various parameters of the
processor, (b) It is not always possible to quantify the
measurement of a certain parameter. For eg. The
memory architecture, branch prediction schemes, etc.
cannot be directly quantified without a context, (c)
There exist benchmarking standards which accurately
measure the performance of the processor.

To test the CPU performance, the SPEC CPU2006
was chosen. However, since we need a relative and
approximate measure of the CPU performance, the
SPEC2006 was subsetted[9] using PCA and k-clustering
to give four benchmark programs: sjeng(), gcc(),
libquantum() and xalan(). Since the CPU2006 suite is
not freely available, the programs were individually
downloaded from their respective sites and tested on the
platform. The workloads supplied to these benchmarks
were also reduced such that the benchmarks finish
execution under a minute.

Each benchmark is run on the system, and the result
of each benchmarked can be summarized as:

(1)

All these results can then be combined to form a
metric which represents the hardware performance of
the system:

 (2)

2) Measuring System Load
To measure the system load, tools such as vmstat,

top, and mpstat were analyzed under various system
loads. The various indicators of the system load are: (a)
The number of time slices spent idling, (b) The expected
number of time slices to be assigned to a new process
(c) The amount of free memory

The measurements are taken every five seconds from
/dev/proc. A significant measure of the speed of
execution of a process is the number of time slices that
the process is assigned. Thus, the initial load is
determined by the number of time slices that a process is
expected to be assigned. This can be approximated from
the number of time slices spent idling, as well as the
number of time slices that were spent by the user
processes. The initial system metric is determined by (3)

Gaurav Mogre, Avinash H

 (3)

The effect of memory and memory faults becomes
relevant only when there is a shortage in memory. Thus,
we account for the memory only when the free memory
available becomes less than a threshold.

 (4)

3) Distribution Metric
The performance of the hardware is checked at the

time of a reboot of the computer. The metric collected
by static measurements of the system by using
benchmarks is denoted by Sysmetricstatic. Meanwhile, the
system load is measured at regular intervals. The final
system metric is then a weighted combination of these
two metrics:

(5)

The distribution metric is a measure of time required
between sending a process to a remote system, and it
returning the results back to the host system. Thus, the
distribution metric includes the overhead involved in
migrating a process, along with the system metric of the
remote system

 (6)

B. Preliminary Information Gathering

This stage involves gathering information about the
current system load that exists over a network. Since we
aim towards a peer-2-peer architecture, notifying each
system in the cluster would lead to increased overhead.
Hence an approximate algorithm was used for this step.
The aims of this algorithm were: (a) Scalability and (b)
Minimum overhead

The foundation of the algorithm was the hierarchical
load balancing algorithm. In hierarchical load balancing,
the nodes in the cluster are arranged in the form of a tree
and load balancing is performed from parent to child. To
extend this algorithm, a Directed Acyclic Graph was
chosen to replace the tree, with appropriate
modifications made to the algorithm. While this
modified algorithm successfully demonstrated various
properties that were useful for the algorithm, embedding
a directed acyclic graph within the cluster in a
distributed way impaired the scalability of this
algorithm, and modifications to this algorithm were
required. This algorithm is given in algorithm I

Algorithm I: Preliminary Information Gathering

Procedure: Init_measurements()

1. Calculate system metric of system.

2. Assign send_probe = the system metric

3. Send send_probe to all neighbors of the current system

4. Set max_dist = 0

5. Set rec_time = Current system time

6. If ((current system time) - rec_time) > delay, then go to step

9

7. For each neighbor i:

a. Get a message from i containing send_probe(i)

b. Set dist_metric(i) = send_probe(i) - constant_overhead

c. if dist_metric(i) > max_dist, assign max_dist =

dist_metric(i)

8. Go to step 6

9. Get current system metric

10. If current system metric > max_dist, set send_probe =

current system metric. Else, set send_probe = max_dist

11. Go to step 3

In algorithm I, the cluster is represented by a simple
undirected graph. Each system in the cluster corresponds
to a single vertex in the graph. A system can be linked
with another system by using a pairing procedure. Each
paired link between two systems can be represented by
an edge in the graph. When a new system wishes to join
a cluster, it must know one system that is present in the
cluster. This can directly pair with the new system,
without informing its neighbors. Similarly, when a
system wishes to be removed from the cluster, it simply
unpairs all its neighbors.

 Initially, a system in the cluster sets it send_metric
variable to its current system metric. It then sends this
value to all its neighbors, and then waits for a fixed
period of time. During this time, the system acquires the
send_metric of all its neighbors. To this value, the
system deducts a constant overhead to give the
distribution metric of each neighbor system. It then
checks the neighbor with the maximum distribution
metric, and stores this value in max_dist. Periodically,
the system will check its own system metric. It then
finds the maximum of the current system metric and
max_dist, and stores this in send_metric. The system
then sends the send_metric to all its neighboring
systems. This procedure proceeds until the system is
removed from the cluster.

This algorithm has the following characteristics:

 Linear complexity: Each machine in the cluster
performs the algorithm in worst case O(n).

 Convergence: The values of the metrics never
converge. The distance of a system from another
system is proportional to how relevant the
information about the current load is.

 Assumption: The algorithm works effectively
only when the increase in load of a system is
gradual. If the increase in loading of machines is
expected to be more sudden, then the various

Gaurav Mogre, Avinash H

parameters of the algorithm, can be modified.
We see that reducing these parameters, would
improve handling of more sudden load changes,
but would induce higher overheads.

 Coherence: The algorithm uses the value of
system metric taken at regular intervals of time.
Hence, it is possible to have a system which has
a system metric much higher than the value of
distribution metric stored in its neighbor (and
consequently, the one that is transferred by the
neighbor). However, by ensuring the delay
added in every step is high enough, such a
scenario could be avoided.

C. Probing

Probing is the procedure to find the exact node to
which a process must be migrated to before the process
migration. The aims of probing are: (a) to get the node
with the optimal load, to handle the process execution
and (b) to allow for the transitivity property to hold: A
process may be transferred from a source node to a
destination node, where the source and destination need
not necessarily be directly paired.

Unlike the hierarchical load balancing algorithm
which worked on timely pings, the probe algorithm is a
sender-initiated strategy. The Probe message is sent just
before the process is going to start executing, to find an
appropriate destination node to deliver the process to.
The probing algorithm uses two kinds of messages:
Probe requests and probe replies.

A probe message can be represented as P(i,j,k)
where i is the system requesting the probing request, j is
the system that is sending the message to the system k.
Similarly, the probe reply can be represented as PR(k,i,
sysmetricK) which is sent from the system k to the
system i which initiated the probing with sysmetricK
being the current system metric of system K.

The algorithm can be divided into three parts: The
probe sending, probe propagation, and probe reply

The probe sending algorithm is given in II:

Algorithm II: Sending Probe

Procedure: Send_probe()

1. Get the current system metric, and compare it with highest

distribution metric of the neighbor.

2. If the current system metric is greater, then execute the

process locally on the system itself.

3. If the highest distribution metric of the neighbor is higher,

then first get the neighbor.

4. Send a probe message to the neighbor.

5. Wait for a reply. If a reply arrives, store it.

The probe propagation and reply steps are given in
algorithm III:

Algorithm III: Propagation of Probe

Procedure: propagate_probe()

1. Consider that node K receives the probe P(I, J, K).

2. Check if the current system metric is greater than the

distribution metric obtained from any neighbor.

3. If the system metric of K is higher, then send back Probe

reply PR(K, I, sys_metricK). Go to end.

4. If the system metric is lower, get the neighbor with the

highest distribution metric. Let this neighbor be M.

5. Send the probe P(I, K, M) to the neighbor M. End

D. Process Migration

Process migration can be carried out either
preemptively and non-preemptively. In non-preemptive
process migration, a process is migration only at its
creation. Preemptive process migration allows processes
which are already executing, to be migrated. Kappa uses
the non-preemptive process migration strategy. This is
because of the following:

 Additional overhead of saving the state of a
process before it is migrated.

 Additional overhead of setting up the same state
of the process after migration.

 The bookkeeping involved with preemptive
process migration is higher.

Thus, a non-preemptive strategy was chosen.

V. RESULTS

Kappa was tested with a few preliminary programs
under various conditions of the CPU

A. System Load

To implement the system, systems A and B were
chosen, such that A was loaded with 4 processes while
B was idling. The programs were run on A. We see that
the system metric of A varied from 35 to 45. On the
other hand, B’s system metric varied from 140 to 150.
When these metrics were distributed in the 2

nd
 step, the

preliminary information gathering, it was found that:
distmetricB on A varied from 125 to 135, while
distmetricA on B varied from 20 to 30.

When the process is about to migrate, a probe
message is sent from A to B, since distmetricB >
sysmetricA. This probe message was received and
replied to by B since B contains no neighbors with
distmetric higher than sysmetricB. B sends a probe
message PR(B, A, 142), where the sysmetricB varies,
back to A. The effect of process migration on the
execution times(in microseconds) of the various
processes is given in Figure 1.

Gaurav Mogre, Avinash H

Figure 1. Results: System Load Change

The results can be summarized in Table III

TABLE II. RESULTS OF PROCESS MIGRATION

Proces

s

Sysmetr

icA

Sysmetr

icB

Dismetr

icB on A

Dismetr

icA on B

Exec.

Time

(ms)

Brute

Force

37

148 133 22 2288

Expon

entiat

e

35 144 129 20 3697

Prime 42

145 130 27 2741

Hello

World

37 141 126 22 3176

B. Load Balancing

To test the load balancing performance, three
systems, A, B and C, were chosen. B was paired with
both A and C. A and B were loaded with five processes
each, while C was left idling. Then infinite loop
processes were created in A to see the effect of
increasing the load. The results (and comments) are
listed in Table IV.

TABLE III. EFFECT OF INCREASING LOAD

Process No. Result Comment

1 No migration

The probe reply wasn’t
received before the

process ran

2 Migrated to System C. After 2 “delays” to pass
for convergence.

3-7 Migrated to System C

Fork and execve

separated by some

jumps to allow probe
replies to arrive.

8-9 No Migration The System C load is

higher than System B,
but B’s cache is not

updated. Probe reply

finds out that migration
is not needed

10 Migrated to System B System B has the least

load

VI. CONCLUSIONS AND FURTHER SCOPE

Kappa successfully improved the overall system
performance by effective load balancing and process
migration. Results show an improvement of around 90%
for CPU intensive applications. We see that the load
balancing scheme is scalable, efficient, and without a
central point of failure.

Kappa can be easily incorporated in a system. It
allows transparent process migration, and hence no
changes to programs are necessary to utilize the process
migration facility. The system also does not modify the
usability of the system, since it seamlessly integrates
into the system. Hence, we see that Kappa bridges the
gap between Home computing and cluster computing.

A few improvements that could be introduced to the
system are:

 Higher piggybacking of commands between
migrated process and stub and use of Migratable
Sockets for migrated processes

 Preprocessing of ELF string table and
estimation of the files required by the process,
so it could be sent along with the process.

 Preprocessing a process to determine if it is
CPU and IO intensive, and accordingly migrate
process

REFERENCES

[1] D. Milojicic, F. Douglas, Y. Paindaveine, R. Wheeler and S.
Zhou, “Process Migration,” ACM Computing Surveys (CSUR),
vol.32 n.3, pp. 241–299, September 2000.

[2] J.M. Smith, “A survey of process migration mechanisms,”
ACM SIGOPS Operating Systems Review, vol. 22 n.3, pp. 28-
40, July 1988.

[3] M. Bubak, D. Zbik, D. Albada, K. Iskra and P. Sloot, “Portable
library of migratable sockets,” Scientific Programming, vol.9
n.4, pp. 211-222, December 2001, IOS Press.

[4] M. Claypool, D. Finkel, “Transparent Process Migration for
Distributed Applications in A Beowulf Cluster,” Proceedings of
the International Network Conference 2002, pp. 459-466, July
2002.

[5] N. Vasudevan, P. Venkatesh, “Design and Implementation of a
Process Migration System for the Linux Environment,” 3rd
International Conference on Neural, Parallel and Scientific
Computations, Aug 2006.

[6] T.L. Casavant, J.G. Kuhl, “A taxonomy of scheduling in
general-purpose distributed computing systems,” IEEE
Transactions on Software Engineering, vol. 14 n.2, pp. 141-154,
Feb 1988, IA: IEEE.

[7] R. Wolski, N. Spring, J. Hayes, “Predicting the CPU availability
of time-shared Unix systems on the computational grid,” Cluster
Computing, vol. 3 n.4, pp. 293-301, 2000, MA: Kluwer
Academic Publishers.

[8] A. Phansalkar, A. Joshi, L. John, “Subsetting the SPEC
CPU2006 benchmark suite,” ACM SIGARCH Computer
Architecture News, vol. 35 n.1, pp. 69-76, 2007, NY:ACM.

0

2000

4000

6000

8000
M

ic
ro

se
co

n
d

s

Without
Kappa

Using
Kappa

