
Core Specific Block Tagging (CSBT) based Thread Migration Model for

Single ISA Heterogeneous Multi-core Processors

Venkatesh Karthik S1, Pragadeesh R1

College of Engineering, Guindy, Anna University

ABSTRACT

The proposition of a single ISA heterogeneous

multi-core architecture as a mechanism for

saving power sparked the revolution of

experimenting with various thread to core

assignment and migration policies. This paper

proposes a compiler based approach for

migration, which takes into account the ILP

inherent in a given instruction sequence (of a

thread). In this mechanism, the compiler splits a

thread into blocks, tags a block to a core based

the underlying core architecture and optimizes

the split. During execution, the thread is migrated

between cores based on the tags such that power

used is minimized without a negative impact on

the overall performance. The paper also proposes

a mathematical model for the migration policy

and derives an expression for the maximum

number of parallelizable and non-parallelizable

blocks an assembly code could have, up to which

migration would be favorable. We have shown by

simulations that our migration policy provides

better performance/power ratio when compared

to assignment of the entire thread to a single

core.

1. INTRODUCTION

Heterogeneous multi-core systems consist of
cores with varying capabilities and varying levels
of power dissipation. This has given rise to a
scenario where thread to core assignment
critically dictates overall performance and power
usage. Various approaches for solving this
problem have evolved. The changes in ILP within
a thread have severely limited the possibility of
the above assignment. Thus the question arises,
“What is the optimal core for the execution of a
thread or a part of the thread that aims at
minimizing power dissipation and maximizing

performance?”

1
 Student Author

This paper proposes a mechanism in which the
compiler analyses the assembly instruction
stream to identify blocks of instructions, tag each
block to one of the cores in the heterogeneous
multi-core processor such that, if the block were
to be executed in the corresponding core, it gives
the maximum performance with minimum power
dissipation. Once the code has been tagged and
optimized, it then begins its execution in the first
assigned core. When a change of tag is
encountered, the thread is migrated to the core
mentioned in the tag. Basically, this paper aims
at shifting the book-keeping required for thread
migration to the compiler so that the cost of

hardware support is little.

The remainder of the paper is organized as
follows. Section 2 describes the prior work done
in this area. Section 3 describes the architectural
assumptions made in the paper. Section 4
describes in detail, the algorithm used by our
compiler. Section 5 discusses migration issues.
Section 6 proposes a basic analytical model for
power and performance. Section 7 shows the
performance evaluations followed by the

Conclusion.

2. RELATED WORKS

[6] proposes a general overview of
heterogeneous multi-core processors, the
benefits of migrating from a homogeneous to a
heterogeneous core model, scheduling and
software issues in a heterogeneous architecture.
[8] gives a critical analysis of single ISA
heterogeneous multi-core architectures. [5], a
work by the same authors, describes the
significant reduction in power dissipation as a
result of judicious thread to core assignments. [7]
proposes a dynamic mechanism of thread
migration where execution traces and ratio of
ISPs across two heterogeneous cores dictate
thread migration. The need to dynamically
monitor the ISP ratio across cores creates the

need for forced thread migrations, something of
an overhead in the thread execution. [11]
discusses a predictive approach for thread to
core assignment in which similarities in program
structure are exploited dynamically to perform
scheduling. [10] discusses the issues involved in
migration of a thread across cores. These issues
encompass a critical analysis of all components

right from cache hierarchy to register state.

With the above having mentioned, our work
could be a considered as something which would
complement the issues involved in thread
migration. As the issues involved in thread
migration with respect to the underlying
hardware have been sufficiently discussed in
[10], we restrict our discussion only to the
methods that set the stage for and trigger off

thread migration.

3. ARCHITECTURAL DESIGN

We have assumed a simple dual core single ISA
heterogeneous architecture for our processor.
The heterogeneity is purely at a theoretical level
and we do not use a predefined set of attributes
to explicate the heterogeneity. We term the
processors as P (processor capable of extracting
parallelism) and NP (processor incapable of
extracting parallelism). A few features that may
define the heterogeneity between P and NP are:

• Clock frequency.

• Functional unit distribution, number and
function.

• Width of data/address paths.

• Pipeline structures.

• ILP extracting units like Scoreboards,
Tomasulo reservation stations and
Reorder buffers for speculative

execution.

In addition to this, we assume the existence of
ancillary hardware such as interconnects to
support migration. More specifically, the paper
assumes an ideal migration where the entire
thread's state is transferred from one core to
another without loss during the thread migration
process. Although, we do take into account the
time delay involved in the state transfer. We also
require a change in the ISA of the heterogeneous

core processor. We use an instruction called
MIGRATE P (NP) which literally means “Migrate

the thread to Processor P (NP)”.

4. CORE SPECIFIC BLOCK TAGGER (CSBT)

The CSBT is a unit of a compiler, the primary
purpose of which is to tag blocks of assembly
code to a core that would execute it with
minimum power and without a compromise in
performance. The CSBT should be aware of the
underlying architectures of both the cores. The
input to the CSBT is the assembly code that has
been created after all compiler based
optimizations. The output is an assembly code
with the MIGRATE instructions inserted at
vantage points. The algorithm used by the CSBT

chiefly consists of the following 4 steps:

4.1 ILP based Block Splitting:

The available assembly code is scanned,
disregarding the branches present in it and,
blocks of statements are identified as either
parallelizable or non-parallelizable. A block is
placed under either of the above two

classifications based on the following two factors:

• The instructions in a block do not have
Data Dependencies over one another.

• The instructions in a block do not have
Structural dependencies over one

another.

Ideally, they must have a lot of ILP in them such
that their execution time in a processor with ILP
extracting units is significantly lower than in a
simple processor, assuming both processors have
the same state of execution. Once the code has
been split into blocks, appropriate “MIGRATE”

instructions are added at the end of each block.

4.2 Branch Target-based Migration:

Based on the target address of the branch
instructions, appropriate “MIGRATE” instructions
need to be inserted. This is based on the

following three rules:

• If the “JUMP” instruction is in block
labeled “X” (X=P or NP) and the target
address goes to block labeled “X”, then
no migrate instructions need to be
inserted.

• If the “JUMP” instruction is in block
labeled “X” and the target address is in
the first half of a block labeled “Y”, then
the “MIGRATE” instruction at the top of
block “Y” needs to be pulled down to the
target address.

• If the “JUMP” instruction is in block
labeled “X” and the target address is in
the latter half of a block labeled “Y”, then
a “MIGRATE” instruction needs to be

added at the target address.

4.3 Block Merging:

A threshold is set for the minimum size of a
block. If such a small block is found, it is
coalesced with one of its neighboring blocks.
Further, if there are two blocks of the same type,
they are coalesced. This step is mainly to
eliminate blocks that are too small and to reduce
the overhead caused due to too many

migrations.

4.4 Re-addressing:

The address of the instructions, data and code
references are changed after allocating fresh
addresses to the program instruction due to the

addition of the “MIGRATE” instructions.

5. MIGRATION ISSUES

Once the CSBT has tagged the assembly code
with appropriate instructions, we can proceed
with the execution of the code and the migration
of the threads across cores. We examine the

following issues involved in migration:

5.1 A Priori Migration:

Generally the migration overhead µ is a function
of the amount of processor state to be
transferred α, and the support of hardware for

migration β.

µ � ���, �� �1�

Since the CSBT tagged code already has the
MIGRATE instruction inserted at appropriate
locations, another pass on the CSBT can be added
to insert AP MIGRATE (A priori MIGRATE)
instructions sufficiently before MIGRATE
instructions to perform a priori migration of
processor state, which in turn, masks the
migration overhead. This may, however require
dirty bits to propagate post-migration state

changes. How far the AP MIGRATE should be
placed ahead of MIGRATE depends on the size of
the state and the speed of migration

interconnects.

5.2 Branch predictor type:

If the predictor is a correlating one, the amount
of migration overhead increases with the amount
of information, about the previous branches, to
be transferred, which in turn increases with the

degree of correlation of the predictor γ.

Now the Migration overhead is written as:

µ � ���, �,
� �2�

Hence if the predictor state also needs to be
transferred, the positioning of the AP MIGRATE
instruction should also consider this. There is,
however, one nuance to be considered here. If
the degree of correlation is very high, thus
causing the AT MIGRATE instruction to be places
much ahead of the MIGRATE instruction, there is
a good chance of the occurrence of an intra-block
branch between the AT MIGRATE and the
MIGRATE instructions. If this were a single
branch, very little information would be lost.
However, if this were a tight loop, considerable
branch predictor information is lost and this is
reflected by the increased branch predictor
warm-up time in the other core after migration.
There is thus, a tradeoff between migration time

and warm-up time.

5.3 Speculation:
If both the cores support speculative execution
(which implies that the two cores come with
good branch predictors), our mechanism can
actually reduce the overhead incurred due to
flushing the Re-Order buffers (ROBs) due to a
misprediction. When a branch is encountered
during the execution of a thread in Core 1, and if
the branch is predicted to be taken, and if the
target is a MIGRATE instruction, state is
transferred to core 2 and speculative execution
proceeds there. If the prediction were to be
correct, the ROBs are committed. If the branch
were mispredicted, then the execution can
simply proceed on in core 1 and an interrupt can
be sent to core 2 to clear the ROBs. If, however
the next instruction in the sequence is a

MIGRATE, the migration can proceed in parallel
to clearing the ROB. If the execution is
speculated across branches and if the targets
have migrations, then several migrations would
occur and a single misprediction in a core X
would lead to the clearing of ROB in the same
core X which in turn would incur an overhead in
performance. Thus, the amount of migration and
flushing overhead is directly proportional to the

degree of speculation δ.

µ � ���, �,
, �� �3�

6. MATHEMATICAL MODEL FOR

PERFORMANCE:

Let x1 be the average power consumed per
instruction on the powerful processor P1, x2 be
the average power consumed per instruction on

the ordinary processor P2.

� � �� � �� �4�

Let n1 be the number of instructions executed
that may be executed in parallel, n2 be the
number of instructions executed sequentially in a
particular assembly program.

So the power consumed in the first processor is:

�1 � ��� � ��� � �� �5�

The power consumed in the second processor is:

�2 � ��� � ��� � �� �6�
In the scheme proposed, n1 instructions are
executed in P1 and the n2 in P2.The power

consumed in the proposed scheme is:

� � �� � �� � �� � �� �7�

The ratio P1:P is:

�1
� � ��� � ��� � ���� � �� � �� � �� �8�

Since x1>x2,

�1
� � 1 �9�

Further it may be noted that the performance
doesn't vary. This is so because the n2

instructions that can be executed sequentially do
not have performance improvement in P1. This
means they may be executed in the lower power
consuming processor without any performance

loss.

Now let us calculate the maximum number of
blocks into which the CSBT can tag a code such
that, instead of performing migration, the code
can as well be executed in a single processor. Let
k+1 represent that count. Hence k is the number
of migrations. Assuming a constant migration
overhead m and assuming the average time to
execute an instruction in P1 and P2 as t1 and t2

(t1<t2), we have (10) as:

1
��� � �� � �� � ������ � �� � �� � �� � ���

� 1
������� � ����

� � 1
� ��� � �� � �� � ���

� ������� � ����
��� � �� � �� � ���! �11�

Similarly for the other processor P2, we replace ���� by ����. Knowing the parameters for the
various processors and the constant hardware

migration overhead m, k+1 can be calculated.

7. SIMULATION

We simulated our migration policy using GXemul
0.4.7.2 [5] and GCC MIPS cross compiler [4]. We
used MIPS R3000 and R10000 processors for our
simulation. The comparison between the two
processors can be found in [2] and [3]. We
simulated a software migration using shared
memory. We used the CSBT to tag 20 programs
with varying levels of dependencies but with
uniform level of memory access. We normalized
the block sizes and plotted the execution times

as shown in Figure 1.

Figure 1. Execution time for codes with varying

normalized block sizes.

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

60.0000

70.0000

80.0000

64 32 16 8 4 2

E
xe

cu
tio

n
tim

e
(u

se
c)

Normalized Block Size (number of instructions)

Normalized Block size Vs Execution Time

R10000

R5000

Migration

As expected, complete thread execution in
R10000 gave the best results for all block sizes.
The migration results in a gradual increase in
execution time because of the increasing
migration overhead with the decrease in
normalized block size (increase in the number of
blocks). Now we plotted performance/power or
1/(Execution time*power). The result is shown in
Figure 2. This gave better results for the
migration over execution in R10000, particularly

if the block sizes are large.

Figure 2. Performance/Power ratio for codes

with varying normalized block sizes.

8. CONCLUSION AND FUTURE WORK

Thus we have seen how migration book-keeping
can be shifted to the compiler just like shifting
ILP extraction to the compiler. The CSBT can be
added as an extra pass in any optimizing compiler
to facilitate thread migration, principally to save
power with no loss in performance. We have
planned to implement our idea in m5 simulator
by using single ISA heterogeneous dual-core chip
consisting of Alpha EV5 and Alpha EV6 with
necessary hardware support for migration and
ISA support for MIGRATE and AP MIGRATE
instructions and compare the results with IPC
based dynamic migration. We have also planned
to make a detailed analysis on the issues stated
and examine how they affect overall

performance.

9. REFERENCES

[1] http://en.wikipedia.org/wiki/R10000
[2] http://en.wikipedia.org/wiki/R5000

[3] http://gcc.gnu.org/
[4] http://gxemul.sourceforge.net/
[5] Kumar, R. Farkas, K. Jouppi, N.P.

Ranganathan, P. Tullsen, D.M. Processor
Power Reduction via Single-ISA
Heterogeneous Multi-Core Architectures.
Computer Architecture Letters. Volume: 2,
Issue: 1. On page(s): 2- 2. January-December
2003.

[6] M. Gillespie. Preparing for the second stage
of multicore hardware: Asymmetric
(heterogeneous) cores. Technical report,
Intel Corporation, July 2008.

[7] Michela Becchi , Patrick Crowley, Dynamic
thread assignment on heterogeneous
multiprocessor architectures, Proceedings of
the 3rd conference on Computing frontiers,
May 03-05, 2006, Ischia, Italy.

[8] Rakesh Kumar , Dean M. Tullsen ,
Parthasarathy Ranganathan , Norman P.
Jouppi , Keith I. Farkas, Single-ISA
Heterogeneous Multi-Core Architectures for
Multithreaded Workload Performance,
Proceedings of the 31st annual international
symposium on Computer architecture, p.64,
June 19-23, 2004, MÃ¼nchen, Germany

[9] Saisanthosh Balakrishnan , Ravi Rajwar , Mike
Upton , Konrad Lai, The Impact of
Performance Asymmetry in Emerging
Multicore Architectures, Proceedings of the
32nd annual international symposium on
Computer Architecture, p.506-517, June 04-
08, 2005

[10] Theofanis Constantinou , Yiannakis Sazeides ,
Pierre Michaud , Damien Fetis , Andre
Seznec, Performance implications of single
thread migration on a chip multi-core, ACM
SIGARCH Computer Architecture News, v.33
n.4, November 2005

[11] Tyler Sondag , Viswanath Krishnamurthy ,
Hridesh Rajan, Predictive thread-to-core
assignment on a heterogeneous multi-core
processor, Proceedings of the 4th workshop
on Programming languages and operating
systems, October 18-18, 2007, Stevenson,
Washington.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

64 32 16 8 4 2

P
er

fo
rm

an
ce

/p
ow

er
 (1

/J
)

Normalized Block size (number of instructions)

Normalized Block Size Vs Performance/Power

R10000

R5000

Migration

