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Abstract: Many high performance computing 
algorithms are bandwidth limited, hence the need for 
optimal data rearrangement kernels as well as their easy 
integration into the rest of the application. In this work, we 
have built a CUDA library of fast kernels for a set of data 
rearrangement operations. In particular, we have built 
generic kernels for rearranging m dimensional data into n 
dimensions, including Permute, Reorder, Interlace/De-
interlace, etc. We have also built kernels for generic Stencil 
computations on a two-dimensional data using templates 
and functors that allow application developers to rapidly 
build customized high performance kernels.  All the 
kernels built achieve or surpass best-known performance 
in terms of bandwidth utilization. 

I. INTRODUCTION 

In this paper, we address the problem of efficient 
data re-arrangement on the GPU, effectively 
utilizing the available bandwidth. Data re-
arrangement forms a major bottleneck in majority 
of the basic computation kernels. It is very 
important to follow the right access pattern to get 
maximum memory bandwidth; especially given 
how costly accesses to device memory are, thus 
making it a non-trivial task. In case of many data 
intensive GPU applications there still exists a 
considerable gap, between the actual utilized 
bandwidth and the available bandwidth. Typically, 
large applications achieve upto 60% of the 
available bandwidth. An attempt has been made to 
bridge this gap, by developing speedy GPU kernels 
for basic data rearrangement operations. The target 
performance for each kernel is that it effectively 
utilizes upto 90% of the maximum bandwidth 
achievable. The maximum achievable bandwidth is 
taken as the maximum bandwidth attained for on 
device-to-device memcpy operations (77GB/s on 
the Tesla C1060). Furthermore these kernels are 
developed as generic implementations that allow 
for easy integration into existing applications.  

There has been several previous works in 
literature directed towards improving performance 
of bandwidth-limited applications. Harrison et.al 
[1] have worked on Optimizing Data Movement 
Rates For Parallel Processing Applications On 
Graphics Processors using OpenGL, for the earlier 
generations of graphic cards. NVIDIA has explored 
data access dominated problems such as - a 
bandwidth efficient transpose kernel [2], optimal 
3D finite difference kernel [3], efficient GPU 
implementation of a prefix scan operation [4] and 
sorting operation on GPU [5]. The open source 
Thrust [6] library provides C++ STL like functions 
for sorting, scan and other data manipulation 
primitives. Volkov et.al and the group from 
University of California at Berkeley, continue to 
actively work on optimal implementation of data 
intensive primitive linear algebra kernels on the 
GPU [7, 8].   

II. THE GPU AND CUDA 

Graphic Processor Unit (GPU), has evolved into 
highly parallel, multithreaded, many-core 
coprocessors. The GPU is capable of sustaining 
tens of thousands of threads per application and 
offers tremendous computational power.  The Tesla 
10-series GPUs (Tesla C1060) contain 30 multi-
processors; each multiprocessor contains 8 
streaming processors (SM), in total 240 compute 
cores, offering a peak computing performance of 
upto one Teraflop. The Tesla C1060, has 4 GB of 
device memory with a theoretical max bandwidth 
of 102 GB/s.  

NVIDIA’s Compute unified device architecture 
(CUDA), provides a general purpose-programming 
model for GPUs. This has significantly boosted the 
use of GPUs for general purpose applications 



(GPGPU). The GPU kernels are driven from the 
CPU (host), offloading the compute intensive work 
onto the GPU. CUDA executes a kernel as a grid of 
thread-blocks. Threads are grouped into thread-
blocks to allow for dividing the work among the 
available compute recourses. All threads in a 
thread-block can access any shared memory 
location assigned to that thread-block. Shared 
memory is limited fast memory available on each 
SM; its latency is two orders of magnitude lower 
than that of global memory. Global memory is far 
slower and data access operations to global 
memory usually limit performance of data 
intensive applications. To effectively utilize the 
bandwidth available it is required to follow to 
specific optimal data access patterns, such as – 
maintaing coalescence, avoiding partition camping 
and many others. Adhering to these access patterns 
is requirement for any performance kernel on the 
GPU. A more comprehensive and detailed 
description is provided in the CUDA programming 
guide [9] 

III. DATA REARRANGEMENT KERNELS 

This refers to operations that involve rearranging 
data on the GPU device memory, such as – 
transpose, reorder, interlace/de-interlace etc. Data 
rearrangement operations inherently necessitate 
accessing data from different location in the 
memory. In case of the GPU, such a requirement 
presents a significant challenge to adhere to the 
optimal data access patterns.  
The basic data-rearrangement operations that are 
being addressed as a part of this work are: 
 Basic read/write routines: kernels to 

optimally read/write (access) data from the 
GPU global memory.  

 Data reordering routines: reordering multi-
dimensional data, given a specified sequence. 
E.g: transposing a 2D matrix. 

 Interlacing, de-interlacing of data: 
operations that involve joining or splitting 
multi-dimensional data sets, according to a 
specified pattern. E.g: splitting up the real and 
imaginary components for an array of complex 
numbers. 

 Generic stencil computation kernel: a 
generic kernel, for optimal stencil operations 
on two-dimensional data, given any specified 
stencil/convolution. E.g: smoothing filter on a 
2D image.  

A. Basic read/write kernels 
This is the primitive data re-arrangement 

operation. It is very necessary and important to 
clearly understand the concepts governing the 
performance for this operation. Data access 
(read/write) is a very basic operation and 
completely optimizing (solving) this would be a 
substantial effort in itself, and that would be out of 
the scope of the current work.  

CUDA provides the cudaMemcpy() intrinsic 
function for the movement of data on the device. 
This intrinsic is used as the reference for 
comparison. Unlike the CUDA intrinsic memcpy 
function, this kernel allows for data transfer as per 
common access patterns. These kernels are 
templatized for the various access patterns, like 
accessing specified set of indices, access based on 
specified range, etc. One-dimensional CUDA 
blocks are used, with each block serviced by 
threads such that each thread handle four elements 
within a thread block (vector computing model). 
The gridding and threading configuration is done 
automatically based on the data size. A comparison 
of the sequential data access pattern and the CUDA 
intrinsic memcpy, over a range of data sizes on the 
Tesla C1060 is given in Fig.1. The read kernel 
achieves a maximum bandwidth usage of 76 GB/s. 
The bandwidth usage of the read kernel is 
consistently greater than 95% of the bandwidth 
usage of the CUDA memcpy.  
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B. Data Re-ordering kernels 
Generalized data-reordering operations involve 

rearranging N-dimensional data into M-
dimensional data based on specified (any valid) 
reordering sequence. The basic storage order for N-
dimensional data is given by - a vector called 

Fig. 1: Bandwidth utilization of the read kernel, Tesla C1060



‘order’. This order vector contains a permutation of 
the numbers - 0, 1...N-1, with the fastest changing 
dimension coming first and followed by the 
successively slower changing dimensions. An N 
dimensional data set can be re-ordered in N-
factorial possible ways. In the current work, row 
major linearized storage is used as the default for 
multi-dimensional data. 
 

3D Permute Kernel: This kernel is to permute a 
given 3D dataset, there are six possible 
permutations of the ordering sequence - [0 1 2], [0 
2 1], [1 0 2], [1 2 0], [2 0 1] and [2 1 0]. The 3D 
permutation is handled as a set of batched 2D data 
movement operations. Coalescing is maintained for 
global memory accesses. The 2D plane for the data 
movement operation is chosen based on the 
specified permutation order. Such that, it consists 
of the fastest changing dimensions of the input 
order and the desired (output) order. Block size of 
32x32 elements is used, with 32x8 threads 
servicing each block. Every thread is responsible 
for four data elements (vector computing model). A 
diagonalized ordering scheme for accessing the 
CUDA blocks is employed; this is to avoid the 
partition camping effects [10]. Table1 summarizes 
the performance results of the permute kernel on 
128x256x512 data set, on the Tesla C1060. The 
maximum throughput for the different 
permutations is listed in table1. 

It can be observed that 
the permute kernel 
attains upto 80-90% of 
the throughput of the 
memcpy. The variation 
in the bandwidth 
utilized for the different 
ordering sequences can 
be attributed to the 
different data access 
patterns used for each 
of these permutations. 

Reorder Kernel: This kernel is for the more 
generic reorder operation. The 3D permute forms 
the building block for this kernel. The 
offset/striding approach is employed, to represent 
the different orders and convert between these 
orders in a generic way. The major issue in this 
case is to maintain coalescence during the data 
accesses. This poses a serious challenge, since the 

reorder operation inherently necessitates accessing 
data stored in non-contiguous memory locations. 
Similar to the permute kernels; two-dimensional 
blocks of size 32x32 are used, with 32x8 threads. 
The dimensions along which (2D) data are read in 
and written out are chosen such that coalescing is 
maintained during both these operations. This is 
accomplished by accessing data in a 2D plane 
defined by the fastest moving dimension of the 
original order (which is the dim - 0) and fastest 
moving dimension of the desired order. The above-
discussed strategy holds good for N-to-N 
dimension reordering operations. But, with N-to-M 
reorder operations (M < N), maintaining 
coalescence during both read and write cannot be 
guaranteed in all cases. Particularly, when the 
desired order doesn’t include the fastest changing 
dimension of the original order. In order to enhance 
performance of these kernels, the stride values are 
stored in the GPU-constant memory. This is 
advantageous since these stride values are 
recurrently accessed by all the threads. 
Additionally, the base index and the range, in case 
of the N-to-M reorder operation is also stored in the 
constant memory, as it is also accessed incessantly 
by all the threads. 
The kernel takes in as arguments: the number of 
dimensions, an array of the sizes along each 
dimension, an array specifying the desired order 
and finally the input data. In case of the N-to-M, 
reorder operation an additional argument indicating 
the dimension of the output data is also passed to 
the kernel. Representative results from experiments 
conducted on the reorder kernel(s) on the Tesla 
C1060 are provided in the table2. 

The performance of the kernel drops markedly for 
larger dimensions. A completely optimized and 
generic implementation of the kernel is an 
unrealizable goal, due to the limitations of the 
(fast) memory available on the device. But, the 

Permute  
order 

Bandwidth 
(GB/s) 

Tesla C1060 
[0 1 2]  

 memcpy 77.82 

[0 2 1] 62.55 

[1 0 2] 63.17 

[1 2 0] 57.38 

    [2 0 1] 59.63 

[2 1 0] 58.42 

Order Data-size 
Bandwidth (GB/s)

Tesla C1060 

[1 0 2] [256 256 256] (0.07 GB) 76.00 

[1 0 2 3] [256 256 256 1] (0.07 GB) 75.41 

[3 2 0 1] [256 256 1 256] (0.07 GB) 56.24 

[3 0 2 1 4] [256 16 1 256 16] (0.07 GB) 43.40 

Table. 1: 3D Permute kernel 

Table. 2: Representative results for the generic reorder kernel  



performance of the reorder kernel for lower 
dimension (<5) approaches nearly 85% of the 
performance of the memcpy. 

C. Interlace, De-Interlace Kernels 
This is another popular data dominated operation 

wherein multiple (n) data-sets are interlaced 
together to form a single (interlaced) combined set 
of data or a single data-set is split into multiple (n) 
smaller, individual data-sets. As in the case of the 
other data rearrangement operations, this operation 
also inherently requires data stored in non-
contiguous/distant parts of the memory to be 
accessed. 

The shared memory is used as a buffer to hold 
the data and allow non-coalesced manipulation of 
data. Thus, ensuring the accesses to the global 
memory still remains coalesced. In case of the 
interlace kernel, each block reads the data from the 
global memory in a coalesced manner, into the 
shared memory. Here, it is re-arranged and split 
into individual arrays and these are written back to 
the global memory again in a coalesced manner. 
Similarly, also in case of the de-interlace kernel, 
the inverse operation is carried out in a similar 
way. The data is split into blocks of 8x8 and (n*64) 
threads are used to service these individual blocks, 
where n is the number of array being interlaced or 
the being split into eg: 2,3,8. Shared memory used 
by each kernel is equal to the sizes of (n*64) data 
elements. This is to store the elements during the 
intermediate steps. Representative results are 
provided in table3. It is very clear from the results 
that the interlace/de-interlace kernel on Tesla 
C1060 has achieved the target performance. 

D. Generic 2D Stencil Calculation Kernel 

This is the final class of the data rearrangement 
operations. It is different from the earlier 

operations in the respect that this is not purely a 
data rearrangement operation and involves some 
amount of compute. 2D stencil computation, refers 
to computations involving (nearest) neighbors over 
a two dimensional grid. Each point in a two 
dimensional grid is updated with weighted 
contributions from a subset of its neighbors (spatial 
neighbors on the 2D grid) [3]. Such operations are 
very common and can be very widely found in 
many scientific computing applications, some 
examples are - PDE solvers, image filters etc. The 
dependency on neighboring data elements (ghost 
zone/apron values) reduces the extent of data 
parallelism - proving to be a possible bottleneck. 
The performance is commonly limited by the 
bandwidth, since majority of the operation consists 
of data-accesses. 

This kernel provides a generic, optimal 
framework for stencil type computations. The 
actual calculations to be performed are dictated by 
the stencil. The actual required stencil is written as 
a Functor Object [11], with the single threaded 
version of the desired stencil function. The stencil 
kernel employs a 32x32 block with 32x8 threads, 
with each thread handling 4 elements within a 
block. Diagonalized ordering for the accessing the 
CUDA blocks is used to avoid partition camping 
effects. Further, similar to the previous kernels the 
shared memory is used as a user managed cache.  

The stencil calculations of the elements at the 
border of the blocks require elements from 
neighboring blocs. Specifically designated threads 
handle this extra work of loading elements from 
neighboring blocks. For first order stencils - a 
thread block of 32x8 needs to load 34x34 elements. 
This introduces redundancy in the data being 
loaded by each block. So, there is an overlap of 
32x4 elements between each of the blocks, barring 
the blocks at the boundary of the computational 
domain. This additional work results in warp 
divergence within the thread block, causing drop in 
performance of the kernel. Further, loading the 
additional ghost layers elements/apron-values is 
not coalesced, as they are beyond the scope of the 
block. This results in misaligned loads within the 
warp, resulting in drop in performance. But, the 
nature of the stencil operation makes these 
performance deterring operations essential.  

In the current work, experiments are carried out 
with a (2D) finite difference stencil of different 
orders (I, II, III, IV). Detailed results from tests on 

Data-size 
(GB) 

# 
arrays 

Bandwidth (GB/s), Tesla C1060

Interlace 
Kernel 

De-Interlace 
Kernel 

0.27 4 70.93 68.87 

0.34 5 73.95 68.50 

0.41 6 71.51 67.61 

0.48 7 72.14 60.21 

0.55 8 58.58 60.55 

0.62 9 70.60 58.25 

Table. 3: Representative results for Interlace/De-Interlace kernel  



 

Table. 4: Stencil 
Kernel variants 

with texture 
memory, I order 
2D-FD stencil on 

4096x4096 
(float) data set 

the Tesla C1060 are provided in Fig.2. The 2D 
finite difference stencil is commonly used in case 
of discretized PDE solvers.  

 

 

 To avoid uncoalesced accesses - variants of the 
kernel that use texture memory have also been 
explored. Kernel variants with 1D, 2D texture 
memories and also a hybrid implementation that 
utilizes both the global and texture memories have 
been developed and compared (Table4). The 
coalesced data accesses are done through the global 
memory. Whereas the uncoalesced access to the 
apron values are handled though the texture 
memory. It can be seen from the table3, the use 
texture memory provides some improvement in 
performance but not very significant.  

 

IV.  CONCLUSION 

We have developed a library of optimal kernels 
for basic data rearrangement operations on the 
GPU. Each of these kernels has been hand-tuned 
and utilizes upto 85% of the CUDA intrinsic 
(device-device) memcpy function. Furthermore, 
these kernels have been built as generic kernels 
incorporating templates and functors. This generic 
structure allows for seamless inclusion of these 
kernels into existing applications. These kernels 
can be easily used as building blocks for larger 

data-intensive applications to improve the 
application’s overall bandwidth utilization and 
hence the performance. To demonstrate this, we 
have implemented a 2D CFD flow solver on the 
GPU, which incorporates these data rearrangement 
kernels [12]. The performance of the CFD 
application has been greatly improved with an 
overall bandwidth utilization of 56 GB/s on the 
Tesla C1060. Furthermore, a 253x speedup over 
the serial CPU code (Intel Nehalem X5550, single 
core) and 13x speedup over the parallel CPU 
version (16 MPI processes on 8 cores of 2 Quad 
Nehalem X5550) has been observed. 

Furthermore we intend to take this work forward, 
by developing optimal GPU implementations of 
additional data arrangement operations. One such 
immediate candidate is the generic multi-
dimensional coordinate transformations (gridding 
operation). We intend to develop this into a more 
comprehensive and complete library of optimal 
GPU data rearrangement kernels. 
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Stencil kernel  

Variant 

Bandwidth (GB/s) 

Tesla C1060 

Global memory 51.07 

1D Texture 54.34 

Hybrid 1D Texture 52.88 

2D Texture 47.22 

Hybrid 2D Texture 53.91 

Fig. 2: Performance of 2D-FD stencil kernel, Tesla C1060


