
Fast GPGPU Data Rearrangement Kernels using
CUDA

Michael Bader1, Hans-Joachim Bungartz1, Dheevatsa Mudigere*,1,2 , Srihari Narasimhan2, Babu Narayanan2

1Chair for Scientific Computing, Department of Informatics
Technische Universität München,

Munich, Germany

2Computing & Decision Sciences lab
GE Global Research, JFWTC

Bangalore, India

* Corresponding author – dheevatsa@mytum.de. Graduate student at TUM, work carried out the GE-Global research working towards a
master thesis at TUM.

Abstract: Many high performance computing
algorithms are bandwidth limited, hence the need for
optimal data rearrangement kernels as well as their easy
integration into the rest of the application. In this work, we
have built a CUDA library of fast kernels for a set of data
rearrangement operations. In particular, we have built
generic kernels for rearranging m dimensional data into n
dimensions, including Permute, Reorder, Interlace/De-
interlace, etc. We have also built kernels for generic Stencil
computations on a two-dimensional data using templates
and functors that allow application developers to rapidly
build customized high performance kernels. All the
kernels built achieve or surpass best-known performance
in terms of bandwidth utilization.

I. INTRODUCTION

In this paper, we address the problem of efficient
data re-arrangement on the GPU, effectively
utilizing the available bandwidth. Data re-
arrangement forms a major bottleneck in majority
of the basic computation kernels. It is very
important to follow the right access pattern to get
maximum memory bandwidth; especially given
how costly accesses to device memory are, thus
making it a non-trivial task. In case of many data
intensive GPU applications there still exists a
considerable gap, between the actual utilized
bandwidth and the available bandwidth. Typically,
large applications achieve upto 60% of the
available bandwidth. An attempt has been made to
bridge this gap, by developing speedy GPU kernels
for basic data rearrangement operations. The target
performance for each kernel is that it effectively
utilizes upto 90% of the maximum bandwidth
achievable. The maximum achievable bandwidth is
taken as the maximum bandwidth attained for on
device-to-device memcpy operations (77GB/s on
the Tesla C1060). Furthermore these kernels are
developed as generic implementations that allow
for easy integration into existing applications.

There has been several previous works in
literature directed towards improving performance
of bandwidth-limited applications. Harrison et.al
[1] have worked on Optimizing Data Movement
Rates For Parallel Processing Applications On
Graphics Processors using OpenGL, for the earlier
generations of graphic cards. NVIDIA has explored
data access dominated problems such as - a
bandwidth efficient transpose kernel [2], optimal
3D finite difference kernel [3], efficient GPU
implementation of a prefix scan operation [4] and
sorting operation on GPU [5]. The open source
Thrust [6] library provides C++ STL like functions
for sorting, scan and other data manipulation
primitives. Volkov et.al and the group from
University of California at Berkeley, continue to
actively work on optimal implementation of data
intensive primitive linear algebra kernels on the
GPU [7, 8].

II. THE GPU AND CUDA

Graphic Processor Unit (GPU), has evolved into
highly parallel, multithreaded, many-core
coprocessors. The GPU is capable of sustaining
tens of thousands of threads per application and
offers tremendous computational power. The Tesla
10-series GPUs (Tesla C1060) contain 30 multi-
processors; each multiprocessor contains 8
streaming processors (SM), in total 240 compute
cores, offering a peak computing performance of
upto one Teraflop. The Tesla C1060, has 4 GB of
device memory with a theoretical max bandwidth
of 102 GB/s.

NVIDIA’s Compute unified device architecture
(CUDA), provides a general purpose-programming
model for GPUs. This has significantly boosted the
use of GPUs for general purpose applications

(GPGPU). The GPU kernels are driven from the
CPU (host), offloading the compute intensive work
onto the GPU. CUDA executes a kernel as a grid of
thread-blocks. Threads are grouped into thread-
blocks to allow for dividing the work among the
available compute recourses. All threads in a
thread-block can access any shared memory
location assigned to that thread-block. Shared
memory is limited fast memory available on each
SM; its latency is two orders of magnitude lower
than that of global memory. Global memory is far
slower and data access operations to global
memory usually limit performance of data
intensive applications. To effectively utilize the
bandwidth available it is required to follow to
specific optimal data access patterns, such as –
maintaing coalescence, avoiding partition camping
and many others. Adhering to these access patterns
is requirement for any performance kernel on the
GPU. A more comprehensive and detailed
description is provided in the CUDA programming
guide [9]

III. DATA REARRANGEMENT KERNELS

This refers to operations that involve rearranging
data on the GPU device memory, such as –
transpose, reorder, interlace/de-interlace etc. Data
rearrangement operations inherently necessitate
accessing data from different location in the
memory. In case of the GPU, such a requirement
presents a significant challenge to adhere to the
optimal data access patterns.
The basic data-rearrangement operations that are
being addressed as a part of this work are:
 Basic read/write routines: kernels to

optimally read/write (access) data from the
GPU global memory.

 Data reordering routines: reordering multi-
dimensional data, given a specified sequence.
E.g: transposing a 2D matrix.

 Interlacing, de-interlacing of data:
operations that involve joining or splitting
multi-dimensional data sets, according to a
specified pattern. E.g: splitting up the real and
imaginary components for an array of complex
numbers.

 Generic stencil computation kernel: a
generic kernel, for optimal stencil operations
on two-dimensional data, given any specified
stencil/convolution. E.g: smoothing filter on a
2D image.

A. Basic read/write kernels
This is the primitive data re-arrangement

operation. It is very necessary and important to
clearly understand the concepts governing the
performance for this operation. Data access
(read/write) is a very basic operation and
completely optimizing (solving) this would be a
substantial effort in itself, and that would be out of
the scope of the current work.

CUDA provides the cudaMemcpy() intrinsic
function for the movement of data on the device.
This intrinsic is used as the reference for
comparison. Unlike the CUDA intrinsic memcpy
function, this kernel allows for data transfer as per
common access patterns. These kernels are
templatized for the various access patterns, like
accessing specified set of indices, access based on
specified range, etc. One-dimensional CUDA
blocks are used, with each block serviced by
threads such that each thread handle four elements
within a thread block (vector computing model).
The gridding and threading configuration is done
automatically based on the data size. A comparison
of the sequential data access pattern and the CUDA
intrinsic memcpy, over a range of data sizes on the
Tesla C1060 is given in Fig.1. The read kernel
achieves a maximum bandwidth usage of 76 GB/s.
The bandwidth usage of the read kernel is
consistently greater than 95% of the bandwidth
usage of the CUDA memcpy.

 read kernel v/s memcpy

0

20

40

60

80

100

512 8192 131072 2097152 3.4E+07
Data-size (Bytes)

T
hr

ou
gh

pu
t (

G
B

/s
)

read_kernel
memcpy

B. Data Re-ordering kernels
Generalized data-reordering operations involve

rearranging N-dimensional data into M-
dimensional data based on specified (any valid)
reordering sequence. The basic storage order for N-
dimensional data is given by - a vector called

Fig. 1: Bandwidth utilization of the read kernel, Tesla C1060

‘order’. This order vector contains a permutation of
the numbers - 0, 1...N-1, with the fastest changing
dimension coming first and followed by the
successively slower changing dimensions. An N
dimensional data set can be re-ordered in N-
factorial possible ways. In the current work, row
major linearized storage is used as the default for
multi-dimensional data.

3D Permute Kernel: This kernel is to permute a
given 3D dataset, there are six possible
permutations of the ordering sequence - [0 1 2], [0
2 1], [1 0 2], [1 2 0], [2 0 1] and [2 1 0]. The 3D
permutation is handled as a set of batched 2D data
movement operations. Coalescing is maintained for
global memory accesses. The 2D plane for the data
movement operation is chosen based on the
specified permutation order. Such that, it consists
of the fastest changing dimensions of the input
order and the desired (output) order. Block size of
32x32 elements is used, with 32x8 threads
servicing each block. Every thread is responsible
for four data elements (vector computing model). A
diagonalized ordering scheme for accessing the
CUDA blocks is employed; this is to avoid the
partition camping effects [10]. Table1 summarizes
the performance results of the permute kernel on
128x256x512 data set, on the Tesla C1060. The
maximum throughput for the different
permutations is listed in table1.

It can be observed that
the permute kernel
attains upto 80-90% of
the throughput of the
memcpy. The variation
in the bandwidth
utilized for the different
ordering sequences can
be attributed to the
different data access
patterns used for each
of these permutations.

Reorder Kernel: This kernel is for the more
generic reorder operation. The 3D permute forms
the building block for this kernel. The
offset/striding approach is employed, to represent
the different orders and convert between these
orders in a generic way. The major issue in this
case is to maintain coalescence during the data
accesses. This poses a serious challenge, since the

reorder operation inherently necessitates accessing
data stored in non-contiguous memory locations.
Similar to the permute kernels; two-dimensional
blocks of size 32x32 are used, with 32x8 threads.
The dimensions along which (2D) data are read in
and written out are chosen such that coalescing is
maintained during both these operations. This is
accomplished by accessing data in a 2D plane
defined by the fastest moving dimension of the
original order (which is the dim - 0) and fastest
moving dimension of the desired order. The above-
discussed strategy holds good for N-to-N
dimension reordering operations. But, with N-to-M
reorder operations (M < N), maintaining
coalescence during both read and write cannot be
guaranteed in all cases. Particularly, when the
desired order doesn’t include the fastest changing
dimension of the original order. In order to enhance
performance of these kernels, the stride values are
stored in the GPU-constant memory. This is
advantageous since these stride values are
recurrently accessed by all the threads.
Additionally, the base index and the range, in case
of the N-to-M reorder operation is also stored in the
constant memory, as it is also accessed incessantly
by all the threads.
The kernel takes in as arguments: the number of
dimensions, an array of the sizes along each
dimension, an array specifying the desired order
and finally the input data. In case of the N-to-M,
reorder operation an additional argument indicating
the dimension of the output data is also passed to
the kernel. Representative results from experiments
conducted on the reorder kernel(s) on the Tesla
C1060 are provided in the table2.

The performance of the kernel drops markedly for
larger dimensions. A completely optimized and
generic implementation of the kernel is an
unrealizable goal, due to the limitations of the
(fast) memory available on the device. But, the

Permute
order

Bandwidth
(GB/s)

Tesla C1060
[0 1 2]

 memcpy 77.82

[0 2 1] 62.55

[1 0 2] 63.17

[1 2 0] 57.38

 [2 0 1] 59.63

[2 1 0] 58.42

Order Data-size
Bandwidth (GB/s)

Tesla C1060

[1 0 2] [256 256 256] (0.07 GB) 76.00

[1 0 2 3] [256 256 256 1] (0.07 GB) 75.41

[3 2 0 1] [256 256 1 256] (0.07 GB) 56.24

[3 0 2 1 4] [256 16 1 256 16] (0.07 GB) 43.40

Table. 1: 3D Permute kernel

Table. 2: Representative results for the generic reorder kernel

performance of the reorder kernel for lower
dimension (<5) approaches nearly 85% of the
performance of the memcpy.

C. Interlace, De-Interlace Kernels
This is another popular data dominated operation

wherein multiple (n) data-sets are interlaced
together to form a single (interlaced) combined set
of data or a single data-set is split into multiple (n)
smaller, individual data-sets. As in the case of the
other data rearrangement operations, this operation
also inherently requires data stored in non-
contiguous/distant parts of the memory to be
accessed.

The shared memory is used as a buffer to hold
the data and allow non-coalesced manipulation of
data. Thus, ensuring the accesses to the global
memory still remains coalesced. In case of the
interlace kernel, each block reads the data from the
global memory in a coalesced manner, into the
shared memory. Here, it is re-arranged and split
into individual arrays and these are written back to
the global memory again in a coalesced manner.
Similarly, also in case of the de-interlace kernel,
the inverse operation is carried out in a similar
way. The data is split into blocks of 8x8 and (n*64)
threads are used to service these individual blocks,
where n is the number of array being interlaced or
the being split into eg: 2,3,8. Shared memory used
by each kernel is equal to the sizes of (n*64) data
elements. This is to store the elements during the
intermediate steps. Representative results are
provided in table3. It is very clear from the results
that the interlace/de-interlace kernel on Tesla
C1060 has achieved the target performance.

D. Generic 2D Stencil Calculation Kernel

This is the final class of the data rearrangement
operations. It is different from the earlier

operations in the respect that this is not purely a
data rearrangement operation and involves some
amount of compute. 2D stencil computation, refers
to computations involving (nearest) neighbors over
a two dimensional grid. Each point in a two
dimensional grid is updated with weighted
contributions from a subset of its neighbors (spatial
neighbors on the 2D grid) [3]. Such operations are
very common and can be very widely found in
many scientific computing applications, some
examples are - PDE solvers, image filters etc. The
dependency on neighboring data elements (ghost
zone/apron values) reduces the extent of data
parallelism - proving to be a possible bottleneck.
The performance is commonly limited by the
bandwidth, since majority of the operation consists
of data-accesses.

This kernel provides a generic, optimal
framework for stencil type computations. The
actual calculations to be performed are dictated by
the stencil. The actual required stencil is written as
a Functor Object [11], with the single threaded
version of the desired stencil function. The stencil
kernel employs a 32x32 block with 32x8 threads,
with each thread handling 4 elements within a
block. Diagonalized ordering for the accessing the
CUDA blocks is used to avoid partition camping
effects. Further, similar to the previous kernels the
shared memory is used as a user managed cache.

The stencil calculations of the elements at the
border of the blocks require elements from
neighboring blocs. Specifically designated threads
handle this extra work of loading elements from
neighboring blocks. For first order stencils - a
thread block of 32x8 needs to load 34x34 elements.
This introduces redundancy in the data being
loaded by each block. So, there is an overlap of
32x4 elements between each of the blocks, barring
the blocks at the boundary of the computational
domain. This additional work results in warp
divergence within the thread block, causing drop in
performance of the kernel. Further, loading the
additional ghost layers elements/apron-values is
not coalesced, as they are beyond the scope of the
block. This results in misaligned loads within the
warp, resulting in drop in performance. But, the
nature of the stencil operation makes these
performance deterring operations essential.

In the current work, experiments are carried out
with a (2D) finite difference stencil of different
orders (I, II, III, IV). Detailed results from tests on

Data-size
(GB)

arrays

Bandwidth (GB/s), Tesla C1060

Interlace
Kernel

De-Interlace
Kernel

0.27 4 70.93 68.87

0.34 5 73.95 68.50

0.41 6 71.51 67.61

0.48 7 72.14 60.21

0.55 8 58.58 60.55

0.62 9 70.60 58.25

Table. 3: Representative results for Interlace/De-Interlace kernel

Table. 4: Stencil
Kernel variants

with texture
memory, I order
2D-FD stencil on

4096x4096
(float) data set

the Tesla C1060 are provided in Fig.2. The 2D
finite difference stencil is commonly used in case
of discretized PDE solvers.

 To avoid uncoalesced accesses - variants of the
kernel that use texture memory have also been
explored. Kernel variants with 1D, 2D texture
memories and also a hybrid implementation that
utilizes both the global and texture memories have
been developed and compared (Table4). The
coalesced data accesses are done through the global
memory. Whereas the uncoalesced access to the
apron values are handled though the texture
memory. It can be seen from the table3, the use
texture memory provides some improvement in
performance but not very significant.

IV. CONCLUSION

We have developed a library of optimal kernels
for basic data rearrangement operations on the
GPU. Each of these kernels has been hand-tuned
and utilizes upto 85% of the CUDA intrinsic
(device-device) memcpy function. Furthermore,
these kernels have been built as generic kernels
incorporating templates and functors. This generic
structure allows for seamless inclusion of these
kernels into existing applications. These kernels
can be easily used as building blocks for larger

data-intensive applications to improve the
application’s overall bandwidth utilization and
hence the performance. To demonstrate this, we
have implemented a 2D CFD flow solver on the
GPU, which incorporates these data rearrangement
kernels [12]. The performance of the CFD
application has been greatly improved with an
overall bandwidth utilization of 56 GB/s on the
Tesla C1060. Furthermore, a 253x speedup over
the serial CPU code (Intel Nehalem X5550, single
core) and 13x speedup over the parallel CPU
version (16 MPI processes on 8 cores of 2 Quad
Nehalem X5550) has been observed.

Furthermore we intend to take this work forward,
by developing optimal GPU implementations of
additional data arrangement operations. One such
immediate candidate is the generic multi-
dimensional coordinate transformations (gridding
operation). We intend to develop this into a more
comprehensive and complete library of optimal
GPU data rearrangement kernels.

ACKNOWLEDGEMENT
I would like to thank GE global research and JFWTC for the

opportunity to carry out this work at their facility. This work is
part of the master thesis submitted in partial fulfillment for the
degree of Master of Science in Computational Science and
Engineering at TUM, Munich Germany.

REFERENCES
[1] O. Harrison, J. Waldron, Optimizing Data Movement Rates For

Parallel Processing Applications On Graphics Processors,
PDCN’07(2007), 251 - 256.

[2] G. Ruestch, P. Micikevicius, Optimizing Matrix Transpose in
CUDA, Tech report, NVIDIA (2009).

[3] P. Micikevicius, 3D Finite Difference Computation on GPUs
using CUDA, Tech report, NVIDIA (2009).

[4] M. Harris, Parallel Prefix Sum (Scan) with CUDA, Tech report,
NVIDIA (2008).

[5] N. Sathish, M. Harris, M. Garland, Designing Efficient Sorting
Algorithms for Manycore GPUs, Tech report, NVIDIA (2008).

[6] Thrust, http://code.google.com/p/thrust/

[7] V. Volkov, J. Demmel, LU, QR and Cholesky Factorizations
using Vector Capabilities of GPUs, Tech report UCB/EECS-
2008-49, UCB, (2008).

[8] V. Volkov, B. Kazian, Fitting FFT onto the G80 Architecture,
Tech report CS258, UCB (2008).

[9] NVIDIA, NVIDIA CUDA, Programming Guide, v. 2.3, NVIDIA
(2009).

[10] M. Harris, Optimizing CUDA, Tech report, NVIDIA Corporation
(2009).

[11] Description of the functor object from the Portland Pattern
Repository http://c2.com/cgi/wiki?FunctorObject

[12] M. Bader, H.J. Bungartz, D. Mudigere, S. Narasimhan, B.
Narayanan, Optimized CUDA Implementation of a Navier-
Stokes based flow solver for the 2D Lid Driven Cavity, poster at
the NVIDIA GPU research summit, 2009.

Stencil kernel

Variant

Bandwidth (GB/s)

Tesla C1060

Global memory 51.07

1D Texture 54.34

Hybrid 1D Texture 52.88

2D Texture 47.22

Hybrid 2D Texture 53.91

Fig. 2: Performance of 2D-FD stencil kernel, Tesla C1060

