
Praana: A Personalized Desktop Filesystem 
 

Amit Roy
1
, Sundar Balasubramaniam

2 

1
Student, Computer Science and Information Systems Group 

2
Associate Professor, Computer Science and Information Systems Group 

Birla Institute of Technology and Science, Pilani 

{h2006039, sundarb}@bits-pilani.ac.in 
 

Owing to the absence of rich contextual cues, 

filesystem search has been full of noise, 

imprecision and very less recall. Contextual 

information in the form of annotations (tags 

defined by users or extracted from files) and 

data/process provenance would improve the 

personal search experience of the user. A 

filesystem architecture to support contextual 

desktop search is proposed. Implementation 

issues are also discussed. 
 

1. Introduction 
 

Navigation and search are the two ways of 

locating information. Historically, navigating 

through a hierarchy has been the primary one, 

with examples ranging from catalogues of a 

library to a recipe in a cookbook to a pay bill in a 

file folder. On the other hand searching has been 

a relatively new phenomenon. But with data 

explosion and increased rate of information 

production combined with the dearth of 

techniques to store them in a structured manner, 

search has become an equally (if not the more) 

important methodology for accessing 

information. 

Advent of various Web Search Engines like 

Google, Yahoo, Windows Live, Ask etc., has 

resulted in a revolution in search technologies. In 

the Web, this has been possible not only because 

of the advancements in Information Retrieval 

techniques but also because of a vast number of 

high performance index servers, running in 

parallel. When compared in terms of the data that 

is handled, filesystem search might seem like a 

distant poor cousin of web search, but  it has its 

own set of challenges, in terms of the resources 

available (CPU, Memory, Secondary Storage), 

data security, privacy, provenance, dearth of 

contextual information and others. 

The problem with the present solutions to 

Filesystem Search (also known as “Desktop 

Search”) is that they have minimal support from 

the filesystem and have to rely on content 

indexing only. Indexing has its own share of 

problems since not all contents can be analysed 

(e.g. multimedia) and often the "context" based 

on which the data was organised by the user is not 

captured. Thus, search in filesystem cannot rely 

only on syntax, or popularity, both of which have 

been exploited to the hilt on the Web. For solving 

this problem existing filesystem architectures 

needs to be modified to gather more contextual 

information. These architectures should also 

support robustness by helping to recover from 

data corruption, loss of information and other 

related errors. This paper proposes a design to do 

the same and a reasonable set of parameters to 

evaluate the solution. The remainder of the paper 

is organised as follows: Section 2 provides a brief 

overview of current research in desktop search, 

filesystem robustness, and file system 

architectures. Section 3 outlines the proposed 

architecture. Section 4 concludes with some 

implementation details and current focus of the 

work. 
 

2. Related Work 
 

Development of Desktop Search Engines started 

with content indexing [2, 3], gradually moving to 

semantic [4, 5] and full text search followed by 

Context Based Search [6, 7, 8, 9] which is the 

focus of researchers today. Filesystem Versioning 

was implemented in [10] to increase robustness. 

Some of the standard Data Provenance 

Techniques [11] developed for e-sciences were 

adopted in [12]. Filesystems that move away from 

the hierarchical structure for better usability were 

also developed [7, 13]. These are summarized in 

Table 1.  

The drawbacks of all these efforts (see last 

column of Table 1) have been either substantial 

dependency on users or not being able to identify 

appropriate search parameters. 

The proposed architecture models “User 

Activities” in terms of Provenance, Temporal 

Locality and Annotations to enable a better search 

experience. This paradigm helps to achieve 

maximum impact with minimum input. Although 

partial use of provenance has been used as a 

source of contextual information in [9], the 

parameters included in this proposal have not 

been explored earlier. Some of the above issues 



 
Table 1:  Summary of desktop search and novel filesystem implementations 

 

are addressed by our system (see Table 2). 
 

 
Table 2: Design highlights  

 

3. Architecture 
 

The Architecture (Figure 1) introduces three 

components spread across three layers - a User 

Interface (UI), a Metadata Repository (that stores 

provenance data, indexes, archived versions and 

relation graphs [11]) and a User Activity 

Aggregator (UAA) module for capturing user 

activities. The filesystem allows users to enter 

Annotations. The Metadata Repository consists of 

two kinds of information – available to the user 

(annotations and provenance) and not available 

(indexes, archived versions and relation graphs). 

When a user performs an operation on a file, the 

Provenance Collection Engine captures both data 

and process provenance information. For example 

if a user runs a spell checker on a document, then 

the modified spellings are stored as file data and 

also as part of data provenance. Whereas the 

information that the spell checker was run is 

captured as part of process provenance. The 

process section of the UAA contains an Inference 

Learning Engine (ILE) that analyses this data for 

generating contextual cues. The Analyser 

maintains the contextual information as relation 

graphs. It takes inputs from the Provenance 

Collection Engine and modifies the graph 

accordingly.  The annotations are stored as part of 

the file inode. Also two kinds of indexes are 

maintained: content based and annotation based. 
 

3.1 Provenance & Inference 
 

Provenance Information is stored in a database. 

Every access to the file and the corresponding 

changes are recorded. In addition, operations that 

caused these changes are also recorded. 

Operations are recorded by trapping either 



 
Figure 1: System Architecture 

 

functions associated with specific file types or 

generic tasks defined in the filesystem. The ILE 

will tune the contextual data based on heuristics 

generated by the usage of the filesystem. Over a 

period of time it will learn the effect of the use of 

a program on a file. The engine learns and 

Analyser for modifying the relation graphs. When 

a program is run, a record is entered into the 

categorizes “Rules” that are passed on to the 

database about the files that are affected. The first 

action on the files after the program execution is 

also recorded. And a corresponding rule is 

deduced. Consider a scenario, where 

AutoSummarize (function in Microsoft Word to 

summarize a document) is used to create the 

summary S of a file F1 and S is moved to a newly 

created file F2. File F2 is then dispatched as part 

of a reply using a Mail client.  The data 

provenance information induces a new context 

relationship between the F1, F2, and the reply 

mail. If F2 is never used again or is deleted, the 

ILE will infer a rule that the source and 

destination files of an AutoSummarize operation 

should not be related. However, this rule will 

initially be assigned a low Confidence Measure 

which may be reinforced by user feedback or by 

recurrence of the same operation. 
 

3.2 File Clusters & Relation Graph 
 

Context enhanced search solutions that exist 

today do not address changes in the context of a 

file. In the relation graphs, edge weights increases 

depending on the heuristics defined, but they 

never decrease.  When the context of a file  

weakens its relations over a period of time this is 

not reflected in the graph. For example, a file on 

brokerage firms might be related to other files 

associated with banks.  Accordingly the graphs 

are formed. However, a few months and a few  

stock market crashes later the file on brokerage 

firms becomes more related to files on 

bankruptcies rather than those on banks.  The 

methodology for capturing such temporal changes 

in the relationships is described below. 

A fresh filesystem will be represented as a forest 

(on a per user basis); with files inside each 

directory represented as a graph with edges 

having a unit weight. The forest is modified every 

time a file is accessed. The edges as well as edge 

weights are modified according to a set of rules 

exemplified below: 

a.  Edges are added when two files are accessed 

sequentially (edge is directed or undirected 

depends on whether the file is an output file or 

not). 

b.  If there exists an edge and if the files are 

accessed sequentially in any order again, weight is 

increased; otherwise  weight is decreased. The 

weights may not change every time a group of 

files are accessed but will be changed by recurring 

access patterns. 

c.  The provenance information will modify the 

graph if 

      i. a file is an output of a program; edges will 

be added from all the input files.  

      ii. the ownership changes; then an edge gets 

added to the other relevant files belonging to the 

user. 

      iii. two files are created from the same 

process/program; then there will be an edge 

between them (or edge will be strengthened). This 

will also include cases where two files are 

downloaded from the same website and by the 



same user (this information will be stored as part 

of provenance). 

d.  The ILE modifies the graphs every time it 

deduces an inference. E.g. Feedback from user  

activities will strengthen some relations and 

weaken some others; Similarly email replies will 

have the same effect.; Frequent use of text-to-

speech will weaken the links to image files since 

the ILE will be able to deduce that this program is 

mostly used by users who prefer an audio 

interface over a visual interface.                            

e. The indexes created by annotations (keyword 

and user entered) will provide cues to the ILE to 

modify the relationships between nodes.   

The rule set illustrated above is only a partial list. 

The rule c-(i) is adopted from [9]. 
 

3.3 Ranking Engine and User Interface 
 

The Ranking Engine (RE) (part of the UAA) 

ranks the results based on a set of parameters that 

can be selected through the UI. The UI (Figure 2) 

is a parallel Interface for accessing files along 

with the explorer. It displays the results as well as  

 
Figure 2: User Interface 

 

gives feedback to the UAA. The UI consists of 

four sections (adapted from [16]), namely the 

Menu Bar, Search Panel (includes query entry as 

well as results), the File Viewer and the Clusters. 

File Viewer panel will be a scaled down version 

of KDE (K Desktop Environment) that can open 

any type of file. Clusters will display recently 

accessed files or a timeline or clusters based on 

known heuristics. 
 

3.4 Database & Inode Modifications 
 

A combination of Database and file inodes is used 

for storing metadata. Database support helps in 

delegating storage issues and faster retrieval. 

Inode storage leverages OS level caching, thus 

improving performance. The database (Figure 3) 

consists of tables storing Provenance, Inference, 

Versions, Modification Types, Files and 

Operations. The Version table holds all the 

modifications that are done on the files. delta is a 

composite field that stores the incremental 

changes of a file and its metadata.  

The uId stores the user id of the user who is 

responsible for change. The modId points to an 

unique key in the Modtype table. The Modtype 

table is used for storing the different kind of 

modifications that can be done on a file – create, 

change content, move, rename, delete, append etc. 

The Inference table stores all the tuples might 

share the same infId if both of them are part of the 

same operation. The details of the changes are  

 
Figure 3: Tables to store the metadata 

 

stored in the Version table. The Operation table 

stores all the unique operations (both atomic and 

composite) available in the system. The table  

Provenance holds the information pertaining to 

data provenance with the details of the changes in 

the file being stored in the Version table. 
 

 
Figure 4: Modified Inode Structure 

 

The Inode data structure (Figure 4) is a variant of 

the traditional data structure with an additional 

sequence of blocks that stores annotations 

associated with the file. The Annotation block 

consists of four parts: common, keyword, 

annotation and provenance. The common section 

stores the common information about all the 

annotations. Users can add any text in the 

annotation section. Keywords are extracted 

automatically from a file using standard 

Information Retrieval techniques (term frequency-

inverse document frequency, stemming, parts of 

speech tagger, proper noun extraction) [1] and 

stored in the keyword section. The provenance 

section acts as a cache for the provenance 

information. This entry is a collection of ordered 

values that will be stored in the database. 

Throughout the duration of the file’s usage, all the 

provenance data are noted down in this block. 

When the file is closed, this data is flushed into 

the database. In case if the file is not closed after a 

definite quantum of time the provenance block is 

automatically flushed. The common and the 

keyword sections are common to all the users 



whereas the annotation and the provenance 

sections are divided on a per user basis. 
 

3.5 Dataflow  
 

The automated extraction of contextual 

information is done by two orthogonal processes: 

data provenance and inference collection from 

process provenance. The search workflow (after 

queried with a set of keywords) is divided into 

two parts: a content based search, the results of 

which are fed into a context enhancer engine. For 

the first part an existing search engine (Glimpse) 

is integrated into the kernel which indexes the 

files and then does a search on them. The results 

produced in the previous step are then fed into the 

Relations graph that produces more context rich 

results.  This list acts as input to the RE which 

supplies the ranked results to the UI.  
 

3.6 Versioning  
 

Along with the versions in database, 

Checkpointing is used to store snapshots of the 

filesystem. Also beyond a particular checkpoint 

(which will be decided based on heuristics), data 

will be archived in compressed format to reduce 

storage area consumed. 
 

4. Conclusion & Current Focus 
 

Modifications to an existing filesystem (ext3) as 

well as the system call layer for incorporating 

annotations has already been implemented. The 

Annotation structure consists of userid, groupid, 

annotation title and text. System Calls for 

creating, reading, deleting and editing annotations 

and keywords have already been implemented. 

Experimental validation is also under progress. 

Along with the design parameters mentioned in 

this paper, security at the filesystem level needs 

to be addressed. Overhead in terms of both 

performance and storage in the system needs to 

be optimised. Trapping a process while it is 

running will generate more dynamic information 

for the ILE to learn from. Increasing the 

Confidence Measure of the ILE is very crucial for 

better search results. Based on the type of queries, 

a combination of Hash Table and several other 

data structures (e.g. graphs) may be considered as 

an alternative to a database for improved 

performance. 
 

5. References 
 

1. Modern Information Retrieval, Ricardo Baeza 

Yates & Berther Ribeiro Neto, Addison 

Wesley, 1999 

2. Udi Manber, GLIMPSE: A Tool to Search 

Through Entire File Systems, Winter 

USENIX Technical Conference, 1994 

3. Edward Cutrell, Daniel C. Robbins, Susan T. 

Dumais, and Raman Sarin. Fast, flexible 

filtering with Phlat-personal search and 

organization made easy, In CHI 2006, 

Montréal, Québec, Canada. 

4. Susan T. Dumais, Edward Cutrell, J. J. Cadiz, 

Gavin Jancke, Raman Sarin, and Daniel C. 

Robbins. Stuff I’ve Seen: A system for 

personal information retrieval and re-use, 

In SIGIR 2003, Toronto, Ontario, Canada. 

5. D. Quan, D. Huynh, and D. R. Karger. 

Haystack: a platform for authoring end 

User semantic web applications, 

International Semantic Web Conference, 2003 

6. J. Gemmell, G. Bell, R. Lueder, S. Drucker, 

and C. Wong. MyLifeBits: fulfilling the 

Memex vision, ACM Multimedia, 2002. 

7. S. Fertig, E. Freeman, and D. Gelernter. 

Lifestreams: an alternative to the desktop 
metaphor, ACM SIGCHI Conference, 1996. 

8. CAN Soules, GR. Ganger, Carnegie Mellon 

University, Connections: Using Context to 

Enhance File Search, ACM SIGOPS 

Operating Systems Review, 2005 

9. Sam Shah, Brian D. Noble, University of 

Michigan, Craig A. N. Soules, HP Labs, 

Gregory R. Ganger Carnegie Mellon 

University, Using Provenance to Aid in 

Personal File Search, USENIX '07 Annual 

Technical Conference, Santa Clara, CA 

10. CAN Soules, GR Goodson, JD Strunk, 

GR Ganger, Carnegie Mellon University. 

Metadata Efficiency in Versioning File 
Systems. Proceedings of the 2nd USENIX 

Conference on File and Storage, 2003 

11. Yogesh L. Simmhan, Beth Plale, Dennis 

Gannon, Computer Science Department, 

Indiana University, Bloomington. A Survey 

of Data Provenance Techniques. In 

SIGMOD RECORD, 2005  

12. Kiran-Kumar Muniswamy-Reddy, David A. 

Holland, Uri Braun, andMargo Seltzer. 

Provenace-aware storage systems. In 

USENIX 2006 Boston, MA, USA,  

13. S Ames, N Bobb, KM Greenan, OS Hofmann, 

MW Storer. LiFS: An attribute-rich file 

system for storage class memories. 23rd 

IEEE/14th NASA Goddard Conference on 

Mass Storage, 2006 


