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Abstract - The present day systems are in need 
of high level of fault tolerance in the Multicore 
processors without substantial loss of overall 
performance. The commodity processors that 
are available now have handled mainly soft 
errors (transient errors) and a very small amount 
of work is done for handling hard faults. In this 
paper we propose to include a Reconfigurable 
Hardware Unit (RHU) inside the core which can 
detect and isolate the faults in the functional 
units inside a core using stored test patterns. 
Once the faulty unit is isolated, a part of the 
RHU is reconfigured by loading stored 
configuration to perform the functions of the 
faulty unit and the register values of the faulty 
unit is forwarded to the reconfigured RHU. The 
test patterns and configurations should be stored 
in fast access non-volatile storage devices such 
as flash memory. This improved architecture will 
help to solve many fault tolerance issues with no 
visible loss of performance at low cost and 
space. 
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1. Introduction 
 
 
The number of cores in a die is increasing at a 
high rate; subsequently, the functional units are 
shrinking,making it more susceptible to 
hardware errors. Permanent or intermittent 
hardware faults, caused by defects in the silicon 
or metallization of process package and wear out  
 
 

 
over time, lead to “hard faults”. Transient faults 
(or “soft errors”), which cause random bit values 
to change erroneously, may be caused by 
electrical noise (e.g., crosstalk) or external 
radiation (e.g., alpha radiation from impurities). 
 
At present most of the commodity CMPs have 
handled many of the soft errors that can occur 
inside a core. But handling hard faults is a 
tedious task. Replication of each of the 
functional units is not cost and space friendly. 
Even if we replicate, the complete utilization of 
all the functional units is not possible. The 
improvements in the field of Reconfigurable 
Computing could help us solve the fault 
tolerance issues. 
 
Reconfigurable Computing is getting more and 
more important in the (embedded) computing 
world. Field Programmable Gate Arrays 
(FPGAs), Field Programmable Transistor Arrays 
(FPTAs) and Complex Programmable Logic 
Devices (CPLDs) are used as building blocks for 
reconfigurable computing. Designing 
architectures for (embedded) computer systems 
using reconfigurable hardware is becoming more 
popular, now that classical drawbacks are 
diminishing.  
1 
 
This is mostly because of the speed/flexibility 
trade-off which holds in architectural design. 
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With the use of reconfigurable hardware, one 
tries to fill the gap between a hardware-only 
(Application Specific Integrated Circuit-ASIC) 
and a software-only (General Purpose 
Processors-GPP) solution [8]. It is intended to 
achieve a higher performance than a software-
only solution, and maintain more flexibility than 
a hardware-only solution.  
 
The effectiveness of reconfigurable computing 
in a general purpose, high performance 
processor as in a Multicore processor has not yet 
been evaluated. We propose to integrate a 
reconfigurable hardware unit inside a core. The 
RHU, without disturbing the normal 
functionalities of the core, tests the functional 
units for faults which can take place in a round-
robin or event driven manner, and identifies the 
exact location of the fault. When a fault is 
identified, the RHU is reconfigured to take over 
the functions of the faulty unit. Thus, tolerance 
in many of the functional units inside a core can 
be achieved. 
 
 
2. Related Work 
 
Contemporary processors like the UltraSPARC 
T1, which are manufactured on cutting-edge 
process technology, are especially prone to  soft 
errors. With this problem in mind, Sun 
systematically designed the UltraSPARC T1 
processor with the appropriate level of 
protection of its on-chip memories. In general, 
the UltraSPARC T1 processor protects memory 
arrays with either Single Error Correction / 
Double Error Detection (SEC/DED) or parity 
protection. Redundant arrays are protected with 
parity, while non-redundant arrays are protected 
with ECC (Error Correcting Code). Table 1 lists 
the UltraSPARC T1 processor’s on-chip 
memories and its corresponding protection 
mechanism. 
 
TABLE 1 :On -Chip Memory Protection 
Memory Array Protection 
 

Integer Register File ECC 
Floating Point Register 
File 

ECC 

L1 Instruction Cache- Parity/retry 

Data 
L1 Instruction Cache –
Tag 

Parity/retry 

Instruction TLB Parity/retry 
Data TLB Parity/retry 
L1 Data Cache – Data Parity/retry 
L1 Data Cache – Tag Parity/retry 
L2 Cache – Data ECC 
L2 Cache –Tag ECC 
L2 Cache Scrubber Yes 

 
The UltraSPARC T1 processor’s Chipkill 
mechanism1 can correct any error contained 
within a single memory nibble (4 bits), and 
detect any uncorrectable errors contained within 
any two nibbles. Another mechanism 
implemented in the UltraSPARC T1 processor 
to ensure main memory reliability is memory 
scrubbing. Each of the UltraSPARC T1 
processor’s four memory controllers has a 
background error scanner/scrubber to reduce the 
incidence of multi-nibble errors. At the 
International Reliability Physics Symposium1, 
Sun showed that implementing power and 
thermal management features can dramatically 
increase both the lifetime and reliability of the 
device by up to 24 times while maintaining or 
improving device performance. 
 
Li et al. [1] have proposed a method (CASP) for 
autonomous testing of cores in Multicore 
environment by adding a hardware unit. CASP is 
a special kind of self test where a system tests 
itself concurrently during normal operation 
without any downtime visible to the end-user. 
The basic idea is to store very thorough test 
patterns in non-volatile storage, such as hard 
disks or FLASH memory, and provide 
architectural and system-level support for testing 
one or more cores in a multi-core system, while 
the rest of the system continues to operate 
normally. 
 
ARGUS [3] exploits the fact that the core 
performs only four basic operations, choosing 
the sequence of instructions to execute (control 
flow), performing the computation specified by 
each instruction, passing the result of each 
instruction to its data-dependent instructions 
(data flow), and interacting with memory. By 



checking all these activities most of the errors 
that can occur inside a core can be detected.    
 
Bower et al. [4] have proposed a DIVA checker 
that detects an error in an instruction and 
increments a small saturating error counter for 
every field deconfigurable unit (FDU) used by 
that instruction, including the DIVA checker. A 
hard fault in an FDU quickly leads to an above-
threshold error counter for that FDU and thus 
diagnoses the fault.  
 

Bell et al. [6] have proposed that redundant 
execution on chip multiprocessors helps in 
detecting the faults with no major impact on 
performance. Errors can be detected by 
buffering retired stores in a store comparator 
queue where they are compared to identical 
stores executed on a second thread. If a 
mismatch is detected in either a store’s data or 
address, an error is signaled to the processor so 
that it can respond appropriately. 

 
3. Existing Problems 
 
The present transient fault detection is limited to 
storage arrays such as register files, cache and 
memory arrays. It is implemented now using 
certain registers which maintains the parity 
information which can be used to detect the 
errors.  

None of the current generation CMPs can 
tolerate errors in the associated cache circuitry 
or interconnect. . For example, if all L2 cache 
banks are shared, and addresses are interleaved 
among the banks, a transient failure in the cache 
controller state machine could lead to erroneous 
setting of a coherence bit. Note that ECC on the 
coherence state bit would not prevent this error 
because the fault is in the cache controller logic 
and not the actual coherence bit. Such an error 
could affect an entire socket. 

There is no fault isolation in Opteron, Xeon and 
Niagara; an error originating in any core can 
propagate to all the other cores through the 
shared system components. For example, if the 
L2 cache is shared among various cores, then 

any error in the cache controller will affect all 
the cores that share these caches. Thus, any fault 
in shared resources is difficult to isolate. 

All the architectures have sophisticated 
techniques like chip kill, background scrubbing, 
and DIMM sparing to tolerate failures’ here is 
no tolerance to failures in memory access 
control circuitry. A failure in any memory 
controller or anywhere in the interconnect would 
affect all the cores. 

 
4. Proposed Solutions 
 
The RHU which is integrated into the core has 
the following functions - Detection, Isolation 
and correction.  
 
The Testing unit configured in the RHU can 
function as Signal Tracker or Control Flow or 
Data Flow or Computation Checker. Testing can 
be done in event-driven and round-robin fashion.    
 
The signals that are generated in the core are 
monitored for a while and if any abnormal 
pattern of signals is identified, a tester is 
configured in the RHU which tests the core for 
faults. When a particular unit is under testing, 
the RHU is configured to perform the functions 
of the unit under test. This helps us to test each 
functional unit without disturbing the normal 
operations of the core. When the testing is 
completed, the functions are again transferred to 
the original unit. 
 
While testing, the RHU can be configured as a 
control flow checker that periodically verifies 
that the runtime execution path is valid with 
respect to the static control flow graph (CFG) of 
the program binary. If the static and dynamic 
CFGs conflict, an error is detected which implies 
the core has a faulty unit.  
The faulty unit can be isolated by testing the 
core using stored test patterns in non-volatile 
storage. This requires a test controller and on-
chip buffer for scheduling the self-test in the 
processor core. The basic idea is to store very 
thorough test patterns in non-volatile storage, 
such as hard disks or FLASH memory. 
 



 The test controller will  
 1. Fetch test patterns from the off-chip non-
volatile storage to the on-chip buffer. 
 2. Initiate proper pre-processing of a core before 
it enters test mode. 
3. Perform scan test of the selected processor 
core with test mode and test clock control 
signals. 
4.Identify the faulty unit in the core. 
 
The configuration of each of the functional units 
is stored in FLASH memory. When a faulty unit 
is isolated, the configuration of that unit is 
loaded into the RHU and this reconfigured unit 
takes over the functions of the faulty unit. This 
process helps the core to recover from serious 
faults with minimal delay. 
 
The values of the registers of the faulty unit has 
to be transferred to the reconfigured unit .This 
can be done by including pseudo instructions 
which transfers the registers of faulty unit to 
RHU. 
 
5. Proposed Implementation 
 
The Reconfigurable Hardware Unit can be 
implemented using FPGA (Field Programmable 
Gate Array) or CPLD (Complex Programmable 
Logic Devices). FPGA is more flexible and 
efficient compared to CPLD. 
 
Xilinx Virtex is a commercially available FPGA 
device. The code of a single core of 
OpenSPARC can be downloaded into Xilinx 
Virtex and a flash memory should be attached. 
The flash memory should be in such a way it can 
also be shared among other cores when used in a 
Multicore environment. 
 
Sun’s OpenSparcT1 architecture is used for the 
implementation of the proposed work as it 
provides various open source tool's support to 
simulate the design.A High level VHDL model 
for the testing, isolation and correction units is 
generated. The logic is partitioned. Each part 
was re-described in a lower level description 
(RTL) required for the circuit synthesis, 
optimization and mapping to the specific 
technology by assigning current FPGA family 
and device. The resulting optimized circuit 

description was verified through extensive 
simulation after which the layout was created 
(Layout synthesis) and finally, on chip 
verification was executed by using C++ 
programming to connect PCI bus to the design 
ports and to test the design. 
 
5.1 Architecture Diagram 
 
Architectural features of the proposed work 
include  
1.Support for stalling and draining the 
pipeline,invalidating the cache,2.Support for 
restoring states and enabling 
communication.These architectural features can 
be introduced to OpenSparc T1 with moderate 
design effort as they  are supported by the 
OpenSparcT1. 
Sun’s OpenSparc Architecture have eight cores 
and main functional units of a core are shown in 
the Fig.2.We propose to include a RHU unit into 
each of the cores of the OpenSPARC and a flash 
memory which can be shared by all the cores.  
(The included units are shown by dotted circle in 
a core in Fig.2.). The RHU should be able to 
meet the space constraints on the core. The flash 
memory is used to store test patterns and 
configurations so that the reconfiguration 
latency is minimum. 

 
 

Fig.2. Proposed Architecture 



 
 
In future the faults in RHU should also be 
identified by self-test mechanism and the 
identified faulty component must not be used for 
later purposes. We should also handle error 
propagation between cores due to faults in 
shared resources. 

6. Conclusion & Future Work 
 
As the size of the functional units decreases the 
number of faults that can occur in a core 
increases drastically. This makes the need for 
fault tolerant systems more important. We have 
proposed to utilize the power and flexibility of 
RHU to bring in fault tolerance in the core at 
unit level. Our system tests the core at unit level 
and replaces the faulty component with minimal 
reconfiguration latency. Thus, the reliability of 
the processors increases in exchange to some 
additional cost and space inside the core.  
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