
Parallelizing Breadth First Search Using CELL Broadband

Engine

Rahul kumar Gayatri,Pallav Kumar Baruah
Sri Satya Sai University

Prashanthi Nilayam - 515134, Andhra Pradesh, India
{rahulgayatri84, baruahpk }@gmail.com

Abstract

Multicore processors are a shift of paradigm in
computer architecture that promises dramatic
increase in performance. But they also bring
complexity in algorithmic design. In this paper
we describe the challenges and design issues in-
volved in parallelizing Breadth First Search on
Cell Brodband Engine (Cell BE).We divide the
graphs into subgraphs and assign them to dif-
ferent processing elements.The major advan-
tage of this algorithm is that we can optimize
on interprocessor communication.

1 Introduction

The Cell BE processor is a joint venture of
IBM,Sony and Toshiba. It is a heterogeneous
multicore processor and has been of much im-
portance in High Performance Computing due
to the high flop rates it provides. It consists
a PowerPc core (PPE) which controls eight
SIMD cores called Synergistic Processing Ele-
ments (SPE’s) which are computational power-
horses. Programming on Cell processor is a
challenge due to the limited memory avail-
able in the SPE’s (256 KB). Hence applica-
tions need significant changes to fully exploit
the novel architecture. Many areas of science
(astrophysics,artificial intelligence,national se-
curity) need techniques to explore large scale

data sets which are in the form of graphs.
Among graph search algorithms Breadth First
Search (BFS) is most important for graph anal-
ysis applications. The problem of searching
large graphs is due to the vast search spaces,
especially in Cell BE due to limited memory
available in its processing elements. In most
applications search algorithms are used to dis-
cover vertices’s and paths. The sequential al-
gorithm is explained by Oreste et.al.[1] where
they have given an algorithm for parallelizing
BFS by distributing vertices’s among different
processors.This algorithm addresses the issue
of load balancing, but it has a drawback of is-
suing more number of DMA’s.In our algorithm
we propose to optimize on the DMA calls.

2 Breadth First Search Algo-
rithm (BFS)

In this section we present the methodology to
parallelize the breadth first search algorithm.
We will first introduce the notation we will fol-
low and a sequential version of BFS. A graph
G = (V,E) is a set of vertices’s V and edges E.
The size of the graph is given by |V |. Given
a vertex v ∈ V , Ev = {w ∈ V : (v, w) ∈ E}
and vertex arity i. e. , the number of nodes
adjacent to the vertex v is given as |Ev|. Given
a graph G = (V,E) and the root vertex r ∈ V

1

the BFS algorithm explores the edges of G to
find all the vertices’s reachable from r and pro-
duces an array named LEVEL of the size |V |,
where LEV ELv gives the level of vertex v i.
e. , number of edges that need to be traversed
from r to reach v.

In any level, Q is the set of vertices’s that
must be visited at the current level and Qnext,
the set of vertices’s to be visited in the next
level i. e. , vertices’s adjacent to those in Q. At
the end of exploration of a level, Qnext is copied
to Q and Qnext emptied. The algorithm termi-
nates when at the end of exploration of some
level there are no vertices’s left in Qnext i. e.
, there are no more vertices’s to be explored.
The algorithm visits a vertex only once. To
do so it maintains an array of marked vari-
able markedv indicating tells whether vertex v
has already been visited. Adjacent vertices’s
are added to Qnext only if that vertex is not
marked. Also there is a level array which main-
tains the information about the level of the ver-
tices’s visited.

Figure 1: Sequential algorithm for
Breadth First Search

The most straightforward way to parallelize
the algorithm is to explore the vertices’s con-
currently with all the processing elements. In

Cell BE a part of Q will be given to each of
the SPE’s. The SPE’s will then explore these
vertices’s, mark them and send their adjacent
vertices’s to PPE. These nodes will become
Qnext in the PPE. At the end of each itera-
tion, all the nodes of Qnext will be copied to
Q and the process repeated. The drawback of
this method is that at the end of each iteration
PPE has to again distribute the work among
different SPE’s apart from copying Qnext to Q.
Also on the marked array an exclusive lock
has to be placed so that more than one pro-
cessing element does not access the array at
any given time. One of the main drawbacks of
parallel computing is the communication over-
head involved between different processing el-
ements.We will minimize on these factors.

In our algorithm we adopt a different ap-
proach from [1]. We store the adjacent ver-
tices’s of a given node in the form of an ar-
ray. When a DMA is issued for the adjacent
vertices’s of a given vertex, all of them can
be brought into Qnext in a single DMA. This
will drastically reduce the number of DMA’s
issued in getting the adjacent vertices’s into
Qnext. Associated with each SPE i we have
a Qi and Qnexti in PPE. Once the vertices’s
are distributed among the different SPE’s, the
subgraphs with roots as these vertices’s are all
marked by the same SPE. In this way the only
time an spe needs to communicate with PPE
is at the end of each iteration when Qnexti of a
SPE has to be copied to its corresponding Qi.
The nodes of Qnexti and Qi have to be stored
in PPE because of the limited space available
in SPE. For large graphs this may not be suffi-
cient to store all nodes for that respective SPE.

3 Implementation of the algo-
rithm

Each vertex is a structure and contains
1) a pointer to an array of its adjacent ver-

2

tices’s
2) an integer which gives the attributes of the
vertex.
3) vertex identifier.
Each vertex is of size 16 bytes so that it is
compatible with DMA size and a maximum of
1024 vertices’s can be transferred in a single
DMA. Input is of the form of an array of size
|V | and type vertex.
The different phases of this implementation
are as follows

START : PPE initiates the computation
by placing the root vertex in Q marking it
with level 0 and getting vertices’s adjacent to
root vertex into Qnext It then distributes the
work among available SPE’s and informs the
SPE.
FETCH : Once the SPE receives message
from PPE it makes a DMA for the nodes that
are assigned to it and marks them.
GATHER : It then explores the nodes and
gets their adjacent nodes into Qnext if they
are not already marked.
REPEAT : After all the vertices’s in the
present level are explored it copies Qnext into
Q and repeats marking and GATHER step
until it has no more vertices’s to explore.
OUTPUT : After exploring all the vertices’s
assigned to it, it writes back all the vertices’s
marked by it to PPE.

But for large graphs the SPE memory may
not be sufficient to hold all the vertices’s in
Q and Qnext Hence the vertices’s have to be
stored in PPE and brought into SPE in blocks.
Let us assume bQ is the portion of Q that is
fetched in each DMA transfer and bQnext is the
portion of Qnext. Corresponding to each SPE
there is a Qnexti and Qi in PPE.

Revised Algorithm with storage con-
straints

START : PPE initiates the compu-
tation, marks the root vertex and puts all
vertices’s adjacent to root in to Qnext. Instead
of distributing the work it continues the work
by copying Qnext into Q and exploring them
until it has sufficient vertices’s so that their
exploring overshadows the DMA latency in-
curred in distributing vertices’s. It then copies
the vertices’s corresponding to each SPE into
its respective Qi and sends a message to the
SPE’s.

FETCH : Once the SPE receives mes-
sage from PPE it fetches bQi a portion of Qi

into its local buffer in a double buffering fash-
ion. This means there are 2 data structures
associated with bQi. We need to wait only for
the first DMA transfer to complete and we
can swap buffers and start a new transfer for
the next block of data from Qi. We can make
the data arrived in the first buffer available
for marking and subsequent steps. Marking
vertices is done by changing the last 8 bits of
integer containing vertex attributes.

GATHER : This step explores the vertices’s
in bQi and loads their respective adjacent
arrays into bQnexti until it is full by using
DMA calls. For this it is necessary to know
the size of the adjacency array and here the
information stored in each vertex about the
length of its adjacency array is used. Adja-
cency arrays are put into bQnexti only if they
are not already marked. It is enough if we
check the first element of the adjacency array
since if it is marked then all are marked. The
integer containing the attributes of the vertex
contains 2 fields 1) length of the adjacency
array of the vertex 2) level of the vertex. Once
bQnexti is full they are copied back into PPE
into their respective Qnexti . This step is also
done in a double buffering fashion i. e. ,there
are two structures associated with bQnexti .

3

REPEAT : Once all the nodes in Qi

are explored SPE informs PPE that it has
finished exploring all nodes in that particular
level. PPE then checks into Qnexti of each
SPE if there are vertices’s left to be explored
by their respective SPE’s if yes it copies Qnexti

to Qi and informs SPE to start computation
again. Else if there are no more vertices’s left
to be explored by that SPE it informs it to
terminate the program.

OUTPUT : Once all the SPE’s have
finished their computation PPE scans through
all the vertices’s and generates the LEVEL
array by using vertex identifier as the index
and level of that vertex as its value in the array.

4 Performance

Performance in parallel algorithms is measured
in terms of accuracy of the results and speed
of execution of the algorithm. In our case it
is to calculate least distance of each vertex
from root and also the time it takes to mark
all vertices’s.The method we presented is opti-
mal for graphs whose average arity of vertices’s
are almost same. Therefore marking the sub-
graphs given to each of the SPE’s will take al-
most same number of iterations. This method
will give better results than those in [1]. The
method presented in [1] involves a lot of com-
munication overhead because of the messages
it passes between SPEs at the end of each iter-
ation. Hence we have a more optimized algo-
rithm as the SPE’s need not interact with each
other as they mark separate subgraphs.

5 Conclusion

Along with increase in performance, multi-
core processors add complexity in software

Figure 2: parallel BFS algorithm with
storage constraints

development. The complexity is due to many
activities running concurrently. A significant
factor effecting parallel algorithms perfor-
mance is the inter-processor communication.
In our case it is the DMA’s between SPE
and PPE. In our algorithm DMA latency
can be overshadowed by performing work
of marking level in the FETCH stage and
checking whether vertices’s are marked or not
in the GATHER stage.

4

Figure 3: Execution time of the Algo-
rithm

6 Future Work

We can select an application for which this al-
gorithm can be used to find optimal solution
and enhance the performance by reducing the
running time of the application.Also we can
find paths from the root to the solution.We can
also add weight corresponding to each edge.

References

[1] Oreste Villa,Daniele Paolo
Scarpazza,Fabrizio Petrini, Juan Fer-
nandez Peinador.Challenges in Mapping
Graph Exploration Algorithms on
Advanced Multi-core Processors. Par-
allel and distributed symposium, 2007
IPDPS.IEEE international

[2] D.A Bader and k.Madduri.Designing Mul-
tithreaded Algorithms for Breadth First

Search and st-connectivity on CRAY
MTA-2.In Proc. Intl Conf on Parallel
Processing August 2006

[3] J.Feo Optimized BFS algorithm on MTA-
2 Architecture.Personal communication
2006

[4] Programming the Cell Broad-
band Engine Architecture Ex-
amples and Best Practices:
www.redbooks.ibm.com/redbooks/pdfs/sg247575.pdf

5

