
1

Executing Long-running Multi-component
Applications on Batch Grids

Sivagama Sundari M Sathish S Vadhiyar
Supercomputer Education and Research Centre

{sundari@rishi.,vss@}serc.iisc.ernet.in
Ravi S Nanjundiah

Centre for Atmospheric & Oceanic Sciences
ravi@caos.iisc.ernet.in

Indian Institute of Science
Bangalore, India

Abstract— Computational grids are increasingly
being used for executing large multi-component sci-
entific applications. The most widely reported ad-
vantages of application execution on grids are the
performance benefits, in terms of speeds, problem
sizes or quality of solutions, due to increased number
of processors. We explore the possibility of improved
performance on grids without increasing the ap-
plication’s processor space. For this, we consider
grids with multiple batch systems. We explore the
challenges involved in and the advantages of exe-
cuting long-running multi-component applications on
multiple batch sites with a popular multi-component
climate simulation application, CCSM, as the motiva-
tion. We have performed extensive simulation studies
to estimate the single and multi-site execution rates of
the applications for different system characteristics.
Our experiments show that in many cases, multiple
batch executions can have better execution rates than
a single site execution.

I. INTRODUCTION

Large scale scientific applications are increas-
ingly being executed on computational grids. For
these applications, grids have been used to pro-
vide feasibility to solve much larger problem sizes
than those that can be solved on a single site
[3], [5], [6], [11], to explore larger search space
of different parameters of a problem [1], [8], to

This work is supported by Ministry of Information Tech-
nology, India, project ref no. DIT/R&D/C-DAC/2(10)/2006
DT.30/04/07

Sivagama Sundari M is the student author

improve the quality of the solutions [9], [12] and
to enhance application performance [3], [5], [11].
Most of these grid benefits are primarily due to
increase in the number of processors available for
execution. However, many scientific applications
have limitations in scalability to large to very large
number of processors. In this work, we focus on yet
another potential use of grids where the processor
space for application execution is not increased.
Specifically, we focus on grids with multiple batch
systems (we refer to these as batch grids) and show
that employing multiple batch systems can improve
the execution rate of long running multi-component
applications.

CCSM (Community Climate System Model) [4]
is one of the most prominent examples of long-
running multi-component scientific applications. It
has five components: the climate simulation mod-
els for atmosphere, land, ocean and sea-ice and
a coupler that coordinates the information flow
among the models. The simulations are typically
performed for several centuries of simulated-time
and can take several weeks or months to execute.
While the components are moldable with respect
to the number of processors, they are not very
scalable and some of them cannot be executed
beyond certain number of processors determined by
their climate data-resolution.



2

II. APPLICATION EXECUTION ON MULTIPLE

BATCH SYSTEMS

Parallel batch systems provide space-sharing of
available processors among multiple parallel appli-
cations or jobs. These batch systems employ queues
in which the incoming parallel applications are
queued before allocation by a batch scheduler to a
set of processors for execution. Hence, the overall
response time of an application is the sum of its
queue waiting time and execution time. In order
to discourage some jobs from engaging resources
for extremely long durations, most batch systems
impose a maximum execution time limit per sub-
mission. Therefore, very long running applications
like CCSM require multiple submissions and incur
queue waiting times for each submission. While
requesting larger number of processors could speed
up the execution of many scalable applications,
larger requests generally incur longer queue waiting
times. This is because smaller requests can be
backfilled more easily. Even in the First-Come-
First-Serve (FCFS) policy where backfilling is not
allowed, a job with smaller request will be allocated
sooner than a job with large request on completion
of jobs with smaller processor requirements. Figure
1 shows the average queue wait times for jobs
with different processor requirements on an IBM
SP2 system in SDSC (San Diego Supercomputer
Center), the job traces for which were obtained
from the logs maintained by Feitelson [7]. From
the figure, we find that in general the queue waiting
times of the jobs increase with their request sizes.
In our work, therefore, we consider splitting an
application request for a large number of proces-
sors, into smaller requests and submitting these
smaller multiple requests to different batch systems
possibly located at different sites. Some of the
factors that affect the feasibility and the possibility
of better performance with multiple site execution
are mentioned below.

1) Application Factors While some parallel ap-
plications like the NAS Parallel Benchmarks
(NPB) [2] with absolute processor require-
ments cannot be decomposed into sub appli-
cations with arbitrary processor requirements,
others like Parameter Sweep Applications can
be. Yet other applications like the multi-
component CCSM by design have a fixed

1−15 16−30 31−45 46−60 60−75 76−90 91−105106−128
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Requested Processor Range

A
ve

ra
ge

 Q
ue

ue
 W

ai
t T

im
es

 (
in

 s
ec

on
ds

)

Fig. 1. Average queue wait times for jobs on a SDSC system

number of well-defined components. Further,
decomposing communication-intensive appli-
cations into smaller parallel applications and
submitting to different batch systems will re-
sult in frequent and heavy communications
between the batch systems. Since these batch
systems can be located in different sites of a
grid, the heavy communication between the
sub applications will lead to much larger ex-
ecution times of the applications than when
executed on a single system. Thus the overall
response time of the application can signif-
icantly increase in spite of the reduction in
queue waiting times. Multi-component MPMD
applications like CCSM consist of components
which are parallel applications themselves. In
these applications, the components are loosely
coupled and communications between compo-
nents are lighter and less periodic than within
components. Hence, they have a potential for
multiple-site executions.

2) System Factors Processors in a single batch
system are connected by high speed links
while processors of different batch systems
are typically connected by WAN links and
other high latency networks. The greater the
speed of the interconnects, the lower the inter-
site execution time and the better the response
times of multiple-site executions of communi-
cating sub-applications. As mentioned earlier,
the advantage of multiple-site executions that
we are interested in is mainly due to the in-



3

crease in queue waiting times with the request
size. The queue waiting times are also affected
by several other factors like the workload
characteristics at each site, the queueing policy
adopted at each site, the maximum execution
time limit imposed by each site, etc.

III. MULTIPLE-BATCH EXECUTION POLICIES

FOR MULTI COMPONENT APPLICATIONS

Due to its long-running nature, the Multi-
Component Application (MCA) execution com-
pletes over several submissions in a batch system.
Since the results of the last submission would be
needed to continue execution in the next submis-
sion, the submissions are sequentialized. Hence, at
any point of time there is only a single submission
of MCA and it is either being executed or is queued.
Note that the execution times of each of the previ-
ous submissions would be equal to the maximum
execution time allowed in the batch system.

One of the most significant challenges in multi-
component executions on multiple batch systems
is that queues become available at different times
and components are generally required to run si-
multaneously. While some multiple-site scheduling
systems support coallocating such jobs, most sites
do not. Hence, we consider different possibilities
or policies of execution. For simplicity, we restrict
ourselves to a single job request (of MCA) in each
system at any point of time. In the description that
follows, we use the term “active” to indicate the
state of a batch system in which our job has has
been assigned the requested number of processors
and can immediately start executing. We use the
term “inactive” to indicate the state when our job
is waiting in the queue for resources.

Following are the different execution policies we
consider.

1) WaitForAll (WFA) We assign one component
to each batch system and execute the MCA
only when all the systems are active. The
active systems idle at other times waiting for
the inactive systems to become active. While
this strategy is simple, it could keep the system
resources engaged for the entire duration of
a submission without performing any useful
work.

2) WaitTillThresholdandAbort(WTTA) This is
a slight modification of the previous strategy
to prevent long continuous idling. Again we
execute the MCA only when all queues are ac-
tive. However, any partial set of active queues
wait for all queues to be active only upto a
threshold time-limit.

3) WaitTillThresholdandExecute(WTTE) In
the previous strategy, a large threshold would
mean resources uselessly engaged for long
durations. However, a small threshold may
not give sufficient time for all queues to
become active and the MCA submissions
could get canceled and resubmitted very often
without being executed. In order to guarantee
the MCA execution, the active systems wait
like in the previous strategy for all systems
to become active until the threshold. When
the threshold is crossed, however, instead of
canceling the submissions, we begin execution
of MCA on the active systems. The execution
would continue until the maximum execution
time limit of one of the active queues is
crossed. If in the meantime, i.e. during the
MCA execution, some of the inactive queues
become active they are canceled, the resources
returned and new submissions are made on
those systems.

4) NoWait Finally, we consider the strategy of
execution without any idling or surrender of
active resources. In this strategy, we use all
available resources at all times by reconfigur-
ing the MCA whenever there is a change in
the set of active systems.

IV. EXPERIMENTS AND RESULTS

We have performed several simulation experi-
ments to quantify and understand the effects of
most of the factors mentioned in the previous
section. Our simulation setup comprises of three
major components: (i) a workload simulator, (ii)
a multiple batch system simulator and (iii) the
execution rate calculator as shown in Figure 2.

The workload simulator produces a list of jobs
with submission time, processor request size and
expected execution time for each job. Although
such lists could be obtained from real logs of vari-
ous supercomputing sites, using a workload model



4

Workload
Simulator

Multiple Batch System
Simulator

Number of Queues

Input Trace
Workload

Job Type

Queueing Policy
[NOBF, CONS, EASY]

MCA−Execution Policy
[WFA, WTTA, WTTE, NoWait]

MCA
Execution Traces

Calculator
Execution Rates

Resource Utilization Rates

[L,N,S,W,LN,LW,SN,SW]

Fig. 2. Simulation Setup

to generate the job sequence enables us to vary
workload characteristics. We can then include their
effect on the performance of a parallel application
when executed across multiple batch queues. We
used the workload model developed by Lublin and
Feitelson [10]. Job processor requirements, run-
times and arrivals are modeled based on a two-stage
uniform distribution, a hyper-Gamma distribution
and a Gamma distribution, respectively. The model
parameters are preset to values representative of
real logs of supercomputers. For all our job traces,
we specified the maximum processor requirement
of the jobs as 128 processors and maximum exe-
cution time of 2 days. We categorize a job as long
(L) or short (S) based on its execution time and
as narrow (N) or wide (W) based on its processor
equirements. By tuning parameters that decide the
ratios of number of L to S jobs and the number
of W to narrow N jobs, we generated 8 different
categories of job traces: L, S, W, N, SN, SW, LN
and LW.

Our batch system simulator is an MPI program
with number of processes equal to number of
batch systems. Each process simulates the queueing
policy of the system with a workload trace obtained
from the workload simulator. The MCA job request
is included along with the workload using one of
the four MCA-execution policies described in the
previous section. Three different queueing policies,
namely, FCFS, CONS (conservative backfilling)
and EASY (EASY backfilling) were considered:
The execution rate calculator uses the execution
trace output of the simulator to calculate the re-
source utilization rate (RUR). RUR is the number of
processor-hours available for execution of the MCA
per day. For a scalable application RUR is directly

2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Number of Queues

P
er

ce
nt

ag
e 

of
 C

as
es

Percentage of cases of better performance vs the number of queues

Single site
Multiple sites

Fig. 3. Percentage of cases in which each mode outperforms
the other

proportional to the application execution rate.

An MCA with 5 components each of size 25 was
considered for our experiments. For a given exper-
iment with a set of batch systems, the components
of MCA were distributed in all possible ways to
all the batch systems. Different experiments were
performed where the number of batch systems were
varied from 2 to 5. Corresponding to each multiple
batch experiment, a single batch system experiment
was performed. The queue characteristics including
the scheduling policy for each system were ran-
domly chosen with uniform distribution. A total
over 6000 experiments were performed.

The multiple queues had better RUR values than
the single queue only with the WTTE and NoWait
policies. And as expected the NoWait policy per-
formed the best.

Figure 3 shows the percentage of cases in which
the multiple site had a higher RUR than the single
site execution and vice versa. The results are shown
for different number of queues with the NoWait
policy followed for multiple site executions.

Figure 4 shows the average fraction of the total
simulation time of each queue spent in executing
the MCA on various number of active queues. Note
that the fraction of time in which all queues are
active is lower than the fraction of time in which
some queues are executing. Hence, the WFA and
WTTA policies, that require all systems to be active
for execution, gave poor performance.



5

2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Queues

F
ra

ct
io

n 
of

 to
ta

l s
im

ul
at

ed
 ti

m
e 

w
ith

 X
 a

ct
iv

e 
si

te
s

Fraction of times with different number of active sites

single active site

two active sites

three active sites

four active sites

five active sites

Fig. 4. Durations of different number of active sites involved
in MCA execution

V. FUTURE WORK: PRACTICAL

IMPLEMENTATION

We are planning to implement the best perform-
ing NoWait strategy with CCSM on real batch
systems. We are currently developing more refined
models for inter-site and intra-site CCSM execu-
tions to perform more CCSM-specific simulations
to identify application-specific advantages and bot-
tlenecks.

In our work, we do not expect any special
middleware or any special considerations from the
batch schedulers, and focus on execution of the
MCA (CCSM) in the existing environment. How-
ever, we do assume that components executed on
different batch systems can communicate witheach
other. This assumption is reasonable since few
MPI (Message Passing Interface) communication
libraries including PACX-MPI and MPICH-GX
support communications between MPI processes
started on different batch systems by means of spe-
cial communication processes or proxies executed
on the front-end nodes of the batch systems. We
are currently performing experiments with CCSM
across multiple disparate sites using the PACX-MPI
framework.

While a practical implementation of the multiple-
batch site is very much feasible, several imple-
mentation overheads such as those associated with
execution time-outs, notifications, scheduling, ini-
tialization, restart-dumps and restart-transfers will

have to be minimized for the solution to be viable.

REFERENCES

[1] C. An, M. Taufer, A. Kerstens, and C. Brooks III.
Predictor@Home: A P̈rotein Structure Prediction Super-
computer’ Based on Global Computing. IEEE Trans-
actions on Parallel and Distributed Systems, 17(8):786–
796, 2006.

[2] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The NAS Parallel Benchmarks
2.0. Technical Report NAS-95-020, Nasa Ames Research
Center, December 1995.

[3] W. Chrabakh and R. Wolski. GridSAT: A Chaff-based
Distributed SAT Solver for the Grid. In SC ’03: Pro-
ceedings of the 2003 ACM/IEEE conference on Super-
computing, page 37, 2003.

[4] W.D. Collins, C.M. Bitz, M.L. Blackmon, G.B. Bonan,
C.S. Bretherton, J.A. Carton, P. Chang, S.C. Doney, J.J.
Hack, T.B. Henderson, J.T. Kiehl, W.G. Large, D.S.
McKenna, B.D. Santer, and R.D. Smith. The community
climate system model: Ccsm3. 1998.

[5] S. Dong, N. Karonis, and G. Karniadakis. Grid Solutions
for Biological and Physical Cross-Site Simulations on the
Teragrid. In 20th International Parallel and Distributed
Processing Symposium (IPDPS 2006), 2006.

[6] X. Espinal, D. Barberis, K. Bos, S. Campana,
L. Goossens, J. Kennedy, G. Negri, S. Padhi, L. Perini,
G. Poulard, D. Rebatto, S. Resconi, A. de Salvo, and
R. Walker. Large-Scale ATLAS Simulated Production on
EGEE. In E-SCIENCE ’07: Proceedings of the Third
IEEE International Conference on e-Science and Grid
Computing, pages 3–10, 2007.

[7] Logs of Real Parallel Workloads from Production Sys-
tems. http://http://www.cs.huji.ac.il/
labs/parallel/workload/logs.html.

[8] M. Gardner, W. chun Feng, J. Archuleta, H. Lin, and
X. Mal. Parallel Genomic Sequence-Searching on an
Ad-hoc Grid: Experiences, Lessons Learned, and Impli-
cations. In SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, page 104, 2006.

[9] L. Han, A. Asenov, D. Berry, C. Millar, G. Roy, S. Roy,
R. Sinnott, and G. Stewart. Towards a Grid-Enabled
Simulation Framework for Nano-CMOS Electronics. In
E-SCIENCE ’07: Proceedings of the Third IEEE Inter-
national Conference on e-Science and Grid Computing,
pages 305–311, 2007.

[10] U. Lublin and D. Feitelson. The Workload on Parallel
Supercomputers: Modeling the Characteristics of Rigid
Jobs. Journal of Parallel and Distributed Computing,
63(11):1105–1122, 2003.

[11] C. Mueller, M. Dalkilic, and A. Lumsdaine. High-
Performance Direct Pairwise Comparison of Large Ge-
nomic Sequences. IEEE Transactions on Parallel and
Distributed Systems, 17(8):764–772, 2006.

[12] C. Stewart, R. Keller, R. Repasky, M. Hess, D. Hart,
M. Muller, R. Sheppard, U. Wossner, M. Aumuller, H. Li,
D. Berry, and J. Colbourne. A Global Grid for Analysis
of Arthropod Evolution. In GRID ’04: Proceedings of
the Fifth IEEE/ACM International Workshop on Grid
Computing, pages 328–337, 2004.


