
A QoS-Based Self-Adaptive Scheduling Algorithm for Real-Time Tasks on
Heterogeneous Clusters

Xiaomin Zhu ∗, Peizhong Lu
School of Computer Science,

Fudan University, Shanghai, P. R. China 200433
{xmzhu, pzlu}@fudan.edu.cn

Abstract

Nowadays, providing quality of service (QoS) guaran-
tees for some applications such as signal data processing
has become a critical issue. In this paper, we propose a
novel QoS-based self-adaptive scheduling algorithm called
QBSA that sufficiently considers the adaptability for real-
time tasks with QoS demands on heterogeneous clusters.
When the system is in heavy load, the QBSA algorithm can
degrade the QoS levels of new arrival tasks or tasks waiting
in local queues of nodes to guarantee high schedulability.
The minimum QoS level is acceptable for each task. In con-
trast, when the system is in light load, QBSA can use slack
time to adequately improve the QoS of new arrival tasks.
We compare QBSA with SADEF algorithm by simulations.
The experimental results indicate that QBSA has admirable
adaptability while providing timing and QoS guarantees.

1. Introduction

Clusters are considered as an attractive medium for cost
effective parallel computing. Specially, heterogeneous clus-
ters receive a good deal of attention in practice because re-
cently purchased machines (nodes) and old ones are usually
assembled in a cluster for economical purpose [1].

Nowadays, diverse real-time applications with QoS re-
quirements have been developed in clusters. For exam-
ple, real-time stock systems require high quality of secu-
rity (a dimension of QoS) to guarantee the data processing
on clusters not being read or altered by malicious users [2].
Authentication service, confidentiality service and integrity
service can be supported to provide security for tasks and
data [4]. In each service, multiple methods can be adopted.
For instances, SEAL, RC4, and RC5, are all cryptographic
algorithms for confidentiality but their security service qual-
ities are different due to the different mechanism used.

0∗ Xiaomin Zhu now is a Ph. D candidate in Fudan University .

Scheduling algorithms play a key role in obtaining a high
performance in cluster computing [3]. Unfortunately, most
existing QoS-based real-time scheduling algorithms only
strive to maximize the QoS level for each arrival task on
the basis of satisfying timing constraints without consider-
ing the adaptability, which may result in some tasks cannot
be accepted when the system is in heavy load.

Many practical instances of scheduling algorithms have
been found to be NP-complete [5]. So heuristic approaches
are widely used to solve scheduling problems. Nowadays,
increasing attention has been directed to the problem of
QoS-based real-time scheduling. Xie and Qin proposed an
algorithm named SAEDF to schedule real-time tasks with
security requirements [2]. The SAEDF algorithm strives to
maximize the QoS level of each new task based on satis-
fying its timing constraint resulting in the schedulability of
tasks would be low. Abdelzaher et al. presented a novel
scheme for QoS negotiation in real-time applications [6].
This scheme uses the batch mode, namely arriving tasks
are collected and scheduled as a meta-task when a schedul-
ing event is triggered. So, this QoS negotiation scheme fo-
cuses mainly on long-lived services that need to hold re-
served resources for an extended period of time. In our al-
gorithm, we exploit the immediate mode (schedule a task
once it arrives). It is noted that both algorithms are designed
for homogeneous systems, making them unsuitable for het-
erogeneous clusters [7]. As a result, we are motivated in
this study to propose a novel scheduling algorithm to self-
adaptively improve the QoS of real-time tasks running on
heterogeneous clusters according to the system load.

In this paper, we propose a QoS-based self-adaptive
scheduling algorithm QBSA, which takes both the timing
and QoS needs into account for real-time, independent, and
aperiodic tasks on heterogeneous clusters. In our study,
tasks arrive dynamically, so our scheduling algorithm is dy-
namic. In addition, the QBSA algorithm is non-preemptive,
which is more efficient, particularly suitable for soft real-
time applications than the preemptive approaches due to re-
ducing the overhead needed for switching among tasks [8].

The QBSA algorithm is able to adjust the priority of
scheduling objectives according to the system load. When
the system is in heavy load, the high guarantee ratio is the
main goal. On the other hand, when the system is in light
load, high QoS for accepted tasks is the major objective.

2. System model

2.1. Scheduler model

Figure 1 shows the scheduler model. When a new task
arrives, the global scheduler collects the information of
tasks running on nodes and tasks waiting in local queues
to calculate the earliest start time of the new task on each
node and decides whether the new task can be allocated or
not. If the new task cannot be scheduled, it will be dropped
into the rejected queue, otherwise it will be transferred to a
destination node. After a new task is allocated to a node,
the global scheduler will transfer the tasks’ scheduling in-
formation to the node. The scheduling information includes
execution sequences, selected QoS levels of the new task
and tasks waiting in this node’s local queue.

Global

Scheduler

....

...

Local Queue

n1

n2

nm

Global Scheduler

Queue

Task

Information

Scheduling

Information

Rejected Queue

Figure 1. Scheduler Model.

2.2. Task model with QoS requirements

T = {t1, t2, ..., tn} is a set of independent real-time
tasks. N = {n1, n2, ..., nm} is a set of nodes. The exe-
cution time is denoted by a matrix E = (eij)n×m, where
element eij denotes the execution time of task ti on node
nj . ai, di, and fi represent the arrival time, deadline, and
finish time of task ti, respectively. Let EST = (estij)n×m

be an earliest start time matrix of tasks, where element
estij denotes the earliest start time of task ti on node nj .
S = (sij)n×m is an execution sequence matrix, where sij

denotes the execution sequence of task ti on node nj . Let
Z = (zij)n×m be a binary matrix, where element zij = 1
if and only if ti has been assigned to nj ; otherwise zij = 0.
Let QoS levels be a set Q, Q = {q1, q2, ..., qk}, where
q1 < q2 < ... < qk.

Xi denotes all possible schedules for task ti, and xi ∈
Xi is a scheduling decision of ti. The QoS level of task
ti adopting schedule xi can be represented by q(xi). xi is
a feasible schedule if (1) deadline of di can be guaranteed,
i.e., fi ≤ di; (2) the QoS requirement is satisfied, i.e., q1 ≤
q(xi) ≤ qk. On the promise of tasks being accepted, the
following function needs to be maximized.

max
xi∈Xi





m∑

j=1

n∑

i=1

zijq(xi)

/
m∑

j=1

n∑

i=1

zij



 . (1)

3. QBSA algorithm

QBSA is a self-adaptive algorithm. When a new task ar-
rives, the maximal quality admission test is performed. that
is the task is given the maximal QoS level and is inserted
into the local queue of a node by the deadline earliest first
policy on condition that the task has earliest finish time on
this node. If this test can guarantee the time constraints of
the new task and tasks whose execution sequences are later
than that of the new task in the same node, allocate the task
to the found node. Otherwise, degrade the QoS level of
each QoS requirement by the Round-Robin policy till it can
be allocated. If the new task getting the minimal QoS level
still cannot be allocated, select a node where the sum of QoS
levels of tasks in its local queue is largest and then degrade
these tasks’ QoS levels using Round-Robin method. If all
the levels of these tasks being degraded to minimal still miss
the deadline of the new task or violate the timing constraints
of tasks whose execution sequences are later than that of the
new task, it is rejected, or it is allocated to the node.
Property 1. If task ti can be allocated to node nj , the fol-
lowing inequalities must be satisfied.

estij + eij

(
q(xi)

) ≤ di, (2)

∀tk, skj > sij : est′kj + ekj

(
q(xk)

) ≤ dk, (3)

where est′kj = estkj + eij

(
q(xi)

)
. The earliest start time

estij can be calculated as follows:

estij = ai +
∑

skj<sij ,wk=1

(
ekj

(
q(xk)

))
+ rj , (4)

where rj is the remaining execution time of the running task
on nj . if task tk is waiting in a local queue, wk = 1, else
wk = 0.
Property 2. If the QoS level of task tl waiting in the local
queue of node nj needs to be degraded for accepting new
task ti, the earliest start time estlj must be recalculated.

Case 1: slj < sij , the new earliest start time est′lj can be
recalculated as:

est′lj = estlj −
∑

skj<slj

(
ekj

(
q(xk)

)− ekj

(
q(xk)

)′)
. (5)

Table 1. Parameters for simulation studies

Parameter Value(Fixed)-/(Min, Max, Step)
node Number (16)-(8, 56, 8)
task Number (6400)
powerAverage (700)
powerSpan (400)-(50, 650, 100)
hardnessAverage (190)
hardnessSpan (100)
baseDeadline (100)
baseT ime (60)
intervalT ime (1)-(0.5, 3.0, 0.1)

Case 2: slj > sij , the est′lj can be recalculated as:

est′lj =estlj + eij

(
q(xi)

)

−
∑

skj<slj

(
ekj

(
q(xk)

)− ekj

(
q(xk)

)′)
, (6)

where ekj

(
q(xk)

)′
denotes the new execution time while

tk’s QoS level is degraded. Note that after the new earliest
start time is recalculated, Property 1 must be satisfied.

The pesudocode of QBSA is given in Figure 2.

4. Performance evaluation

We compare QBSA with SADEF in these metrics: (1)
Guarantee Ratio (GR), (2) QoS Level Average (QLA) and
(3) Overall Performance (OP, OP = GR ∗QLA [2]).

4.1. Simulation method and parameters

(1) pj a positive real number to represent the process-
ing power of node nj . pj is uniformly distributed between
powerAverage − powerSpan and powerAverage +
powerSpan.

(2) hi a positive real number to denote the
hardness of task ti. hi is uniformly chosen be-
tween hardnessAverage − hardnessSpan and
hardnessAverage + hardnessSpan.

(3) eij = (1 + q(xi)/10)× baseT ime× (hi/pj). where
0 ≤ q(xi) ≤ 9. Parameter baseT ime is a random positive
real number.

(4) di is calculated as follows: di = ai + max{eij} +
baseDeadline. baseDeadline is a random positive real
number.

(5) ai is described as: ai = ai−1 + intervalT ime.
intervalT ime is a random positive real number.

Table 1 gives the simulation parameters and their values.

1. for each new arrival task ti do
2. find ← false; q(xi) ← qk;
3. while q(xi)! = qmin do
4. find the node on which ti has the earliest finish time;
5. if Property 1 is satisfied then
6. find ← true; break;
7. else
8. degrade one QoS level by Round-Robin policy;
9. end if
10. end while
11. iffind == false then
12. select node nl on which the sum of QoS levels of

tasks waiting in its local queue is largest;
13. put these task into a empty set S;
14. while find! = true && S! = ∅ do
15. for each task tk on node nl do
16. if q(xk)! = q1 then
17. degrade one QoS level by Round-Robin policy;
18. calculate new EST according to Property 2;
19. if Property 1 is satisfied then
20. find ← true; break;
21. end if
22. else
23. remove tk from S;
24. end if
25. end for
26. end while
27. end if
28. if find == true then
29. allocate ti to node nl;
30. update EST of tasks in the local queue of nl;
31. else
32. reject task ti;
33. end if
34. end for

Figure 2. The pseudocode of QBSA.

4.2. Performance impact of node number

Figure 3(a) shows that QBSA always has higher guaran-
tee ratio than SAEDF when the node number is less than 48.
That is because when the system has heavy load, schedu-
lability is the main objective in QBSA. However, SAEDF
selects the maximal QoS level for every new accepted task
with the timing constraints, which will result in the new task
has longer execution time, so the tasks arrive later have later
start time. If the start time is delayed, the probability of
missing their deadlines increases.

We observe from Figure 3(b) that the QLA of SAEDF
is higher than that of QBSA when the node number is less
than 48. That is because the SAEDF strives to maximize the
QoS levels of all accepted tasks. But SAEDF gets higher
QoS level at the cost of guarantee ratio. From Figure 3(a)
and Figure 3(b), we also find that when the node number

8 16 24 32 40 48 56
0

20

40

60

80

100

Node Number

G
ua

ra
nt

ee
 R

at
io

 (
%

)

QBSA
SAEDF

(a) Guarantee ratio

8 16 24 32 40 48 56
0

2

4

6

8

10

Node Number

Q
oS

 L
ev

el
 A

ve
ra

ge

QBSA
SAEDF

(b) QoS level average

8 16 24 32 40 48 56
0

2

4

6

8

10

Node Number

O
ve

ra
ll

P
er

fo
rm

an
ce

QBSA
SAEDF

(c) Overall performance

Figure 3. Performance impact of node number.

0.6 0.8 1.0 1.2 1.4 1.6 1.82 .0 2.2 2.4 2.6 2.83.0
40

50

60

70

80

90

100

Interval Time

G
ua

ra
nt

ee
 R

at
io

 (
%

)

QBSA
SAEDF

(a) Guarantee ratio

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2

3

4

5

6

7

8

Interval Time

Q
oS

 L
ev

el
 A

ve
ra

ge

QBSA
SAEDF

(b) QoS level average

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2

3

4

5

6

7

8

Interval Time

O
ve

ra
ll

P
er

fo
rm

an
ce

QBSA
SAEDF

(c) Overall performance

Figure 4. Performance impact of arrival rate.

is 56, the guarantee ratio of QBSA is 100 percent and the
QoS level average is higher than that of SAEDF. This can
be explained that the system has light load, so QBSA can
guarantee higher QoS level for every accepted task.

The observation from Figure 3(c) is that when the node
number is smaller, QBSA has almost the same overall per-
formance as SAEDF but when the node number is larger,
QBSA improves the overall performance than SAEDF. This
results can be easily explained that when the node number
increases, the system has light load, QBSA provides higher
QoS level while guaranteeing higher guarantee ratio.

4.3. Performance impact of arrival rate

Figure 4(a) shows that when intervalT ime is smaller,
which makes more tasks wait in the local queues of nodes,
so some tasks arriving later have later start time and miss
their deadlines. With the increase of intervalT ime, the
number of tasks waiting in local queues decreases resulting
in tasks have earlier start time. So, the guarantee ratio in-
creases. Figure 4(a) also shows that QBSA has obviously
higher guarantee ratio than SAEDF when intervalT ime
is less than 2.1. That is because QBSA degrades the QoS
levels of tasks waiting in local queues to decrease the total
execution time of these tasks, so more tasks can be accepted

for earlier start time.
Figure 4(b) shows that when the intervalT ime is in-

creased from 0.5 to 2.0, SAEDF performs better than QBSA
in QoS level average. That is because the SAEDF is only in
pursuit of higher QoS level of new arrival task, regardless
of the tasks arriving later. On the contrary, QBSA adopts
a self-adaptive scheduling policy striving to accept the new
tasks by decreasing the QoS levels of tasks waiting in the lo-
cal queue of the same node if the new task misses its dead-
line using minimal QoS level. However, when the value
of intervalT ime is more than 2.0, the condition is just the
opposite, QBSA has higher QoS level average than SAEDF.
This result can be explained that when tasks arrive slowly,
QBSA does not need to accept a new task by degrading the
QoS levels of tasks in the same local queue any more, and
the QoS becomes a major objective. An interesting obser-
vation from Figure 4(b) is that when intervalT ime varies
from 2.0 to 2.1, the QoS level average of both QBSA and
SAEDF decrease suddenly. The reason is that the task het-
erogeneity resulting in some tasks (long tasks) have longer
execution time, these tasks cannot be accepted until the
value of intervalT ime is large enough.

Figure 4(c) exhibits although QBSA has slightly im-
provement in overall performance, the self-adaptivity
greatly outperforms that of SAEDF.

50 150 250 350 450 550 650
0

20

40

60

80

100

Power Span

G
ua

ra
nt

ee
 R

at
io

 (
%

)
QBSA
SAEDF

(a) Guarantee ratio

50 150 250 350 450 550 650
0

2

4

6

8

10

Power Span

Q
oS

 L
ev

el
 A

ve
ra

ge

QBSA
SAEDF

(b) QoS level average

50 150 250 350 450 550 650
0

1

2

3

4

5

6

Power Span

O
ve

ra
ll

P
er

fo
rm

an
ce

QBSA
SAEDF

(c) Overall performance

Figure 5. Performance impact of node heterogeneity.

4.4. Performance impact of node hetero-
geneity

Figure 5(a) plots that QBSA basically keeps the same
guarantee ratio with the increase of node heterogeneity.
This result proves that QBSA is more suitable for heteroge-
neous clusters than SAEDF. From Figure 5(a), we can find
that QBSA always has higher guarantee ratio than SAEDF
although the node heterogeneity varies greatly. We at-
tribute the improvement to the fact that QBSA considers
the schedulability as its main goal when the node number is
less or tasks arrive quickly.

Figure 5(b) shows that SAEDF has higher QoS level av-
erage than QBSA, but the improvements is not rational for
real-time applications because the guarantee ratio is de-
creased observed from Figure 5(a). Figure 5(b) also reveals
that the performance impact of node heterogeneity for both
algorithms are smaller and the impact of QBSA is slighter
than that of SAEDF.

Figure 5(c) reveals that the overall performances of
QBSA and SAEDF are basically same regardless of the
node heterogeneity on the basis of the node number is
smaller and tasks arrive quickly, which proves that QBSA
is significantly suitable for heterogeneity clusters.

5. Conclusions

In this paper, we proposed a novel self-adaptive schedul-
ing algorithm QBSA for real-time tasks with QoS needs
on heterogeneous clusters. The QBSA algorithm produces
higher guarantee ratio if the system is in heavy load and
higher QoS level if the system is in light load than the ex-
isting algorithm SAEDF. The experimental results indicate
that QBSA is more suitable for heterogeneous cluster where
the arrival rate varies largely, tasks are in higher heterogene-
ity and some nodes dynamically join or quit the cluster.

Acknowledgements

This research was supported by the National Natural Sci-
ence Foundation of China (Grant No. 60673082), and the
Special Funds of Authors of Excellent Doctoral Disserta-
tion in China (Grant No. 200084).

References

[1] X. Zhu and P. Lu, “Study of Scheduling for Processing Real-
Time Communication Signals on Heterogeneous Clusters,”
Proc. 9th int’l Symp. Parallel Architectures, Algorithms, and
Networks (I-SPAN 2008), pp. 121-126, May 2008.

[2] T. Xie and X. Qin, “Scheduling Security-Critical Real-Time
Applications on Clusters,” J. IEEE Trans. Computers, vol.
55, no. 7, pp. 864-879, Jul. 2006.

[3] Y. Zhang, A. Sivasubramaniam, J. Moreira, and H. Franke,
“Impact of Workload and System Parameters on Next Gen-
eration Cluster Scheduling Mechanisms,” J. IEEE Trans.
Parallel and Distributed Systems, vol. 12, no. 9, pp. 967-
985, Sept. 2001.

[4] C. Irvine and T. Levin, “Toward a Taxonomy and Costing
Method for Security Services,” Proc. 15th int’l conf. Com-
puter Security Applications (ACSAC 2006), pp. 183-188,
Dec. 1999.

[5] J. D. Ullman, “NP-Complete Scheduling Problems,” J. Com-
puter and System Sciences, vol. 10, no. 3, pp. 384 -393, Oct.
1975.

[6] T. F. Atdelzater, E. M. Atkins and K. G. Shin, “QoS Negotia-
tion in Real-Time Systems and Its Application to Automated
Flight Control,” IEEE Trans. Computers, vol. 49, no. 11, pp.
1170-1183, Nov. 2000.

[7] X. Qin and H. Jiang, “A Dynamic and Reliability-Driven
Scheduling Algorithm for Parallel Real-Time Jobs Execut-
ing on Heterogeneous Clusters,” J. Parallel and Distributed
Computing, vol. 65, no. 8, pp. 885-900, Aug. 2005.

[8] W. Li, K. Kavi and R. Akl, “A Non-Preemptive Scheduling
Algorithm for Soft Real-Time Systems,” J. Computers and
Electrical Engineering, vol 33, no. 1, pp. 12-29, Jan. 2007.

