
A novel Task Replica based Resource Scheduling
Algorithm in Grid computing

N. Kiran, V. Maheswaran, M. Shyam and P. Narayanasamy

College of Engineering, Guindy (CEG), Anna University, Chennai

Abstract— Increased network bandwidth, more powerful
computers and the Internet have driven the on-going demand for new
and better ways to compute. Grid computing allows one to unite
pools of servers, storage systems, and networks into a single large
system so you can deliver the power of multiple-systems resources to
a single user point for a specific purpose. A primitive algorithm on
scheduling process of grid computing has been studied. Based on it, a
makespan algorithm has been proposed using the novel idea of
process replication. In this algorithm we have made full utilization of
the available resources and mathematically obtained a TPCC which
is only slightly higher than the TPCC of the ideal parallel and
distributed computing systems.

Index Terms — Grid Computing, TPCC, Makespan, Task replica.

I. INTRODUCTION

1.1 Grid Computing
Grid computing [2] allows us to unite pools of servers,

storage systems, and networks into a single large system so
you can deliver the power of multiple-systems resources to a
single user point for a specific purpose. To a user, data file, or
an application, the system appears to be a single enormous
virtual computing system.

With grid computing, an organization can transform its

distributed and difficult-to-manage systems into a large virtual
computer that can be set loose on problems and processes too
complex for a single computer to handle efficiently. The
problems to be solved can involve data processing, network
bandwidth, or data storage. The systems linked in a grid might
be in the same room or distributed around the world. They
might be running different operating systems on many
hardware platforms. They might even be owned by different
organizations. Regardless of the depth of a grid's resources,

N. Kiran is with the Department of Computer Science and Engineering,

College of Engineering, Guindy, Chennai – 600025, INDIA (e-mail:
nkiran87@yahoo.com)

V. Maheswaran is with the Department of Electronics and Communication
Engineering, College of Engineering, Guindy, Chennai – 600025, INDIA (e-
mail: kvmakes@yahoo.com)

M. Shyam is with the Department of Electronics and Communication and
Engineering, College of Engineering, Guindy, Chennai – 600025, INDIA (e-
mail: scintillatingstuffs@yahoo.co.in)

P. Narayanasamy is with the Department of Computer Science and
Engineering, College of Engineering, Guindy, Chennai – 600025, INDIA (e-
mail:sam@annauniv.edu)

all the grid user experiences is the processing resources of a
very large virtual computer.

1.2 Basic Grid Computing Architecture

Practical grids [1] are generally described in terms of
layers as shown in Figure 1. The lowest layers (the ‘platform’)
comprise the hardware resources, including computers,
networks, databases, instruments, and interface devices. These
devices, which will be geographically distributed, may present
their data in very different formats, are likely to have different
qualities of service (e.g. communication speeds, bandwidth)
and are likely to utilize different operating systems and
processor architectures.
A key concept is that the hardware resources can change over
time - some may be withdrawn, upgraded or replaced by
newer models, others may change their performance to adapt
to local conditions - for example restrictions in the available
communications bandwidth.

Fig. 1: Grid Architecture

The middle layers (sometimes referred to as ‘middleware’)

provide a set of software functions that ‘buffer’ the user from
administrative tasks associated with access to the disparate
resources. These functions are made available as services and
some provide a ‘jacket’ around the hardware interfaces, such
that the different hardware platforms present a unified interface
to different applications. Other functions manage the
underlying fabric, such as identification and scheduling of
resources in a secure and auditable way. The middle layer also
provides the ability to make frequently used patterns of
functions available as a composed higher-level service using
workflow techniques.

1.3 Scheduling

Scheduling [3] is a key concept in computer multitasking
and multiprocessing operating system design, and in real-time
operating system design. It refers to the way processes are
assigned priorities in a priority queue. This assignment is
carried out by software known as a scheduler. Operating
systems may feature up to 3 distinct types of schedulers: a
long-term scheduler (also known as an admission scheduler), a
mid-term or medium-term scheduler and a short-term
scheduler (also known as a dispatcher).

Scheduling algorithm is the method by which threads or
processes are given access to system resources, usually
processor time. This is usually done to effectively load
balance a system. The need for a scheduling algorithm arises
from the requirement for most modern system to perform
multitasking, or execute more than one process at a time.
Scheduling algorithms are generally only used in a time slice
multiplexing kernel. The reason is that in order to effectively
load balance a system the kernel must be able to forcibly
suspend execution of threads in order to begin execution of the
next thread.

II. SCHEDULING METRICS

We are considering a primitive algorithm aimed at
reducing the Makespan. We have used this algorithm as the
basis for the algorithm we have constructed.

2.1 Basic Terminologies

The length L of a task is the number of instructions
in the task. The speed of a processor is the number of
instructions computed per unit time. A grid is heterogeneous,
so processors in a grid have various speed by nature. In
addition, the speed of each processor varies over time due to
the load by the original users in public-resource computing.
That is, the speed of each processor is the excess computing
power of the processor which is not used by the original users
and is dedicated to a grid. Let s(p,t) be the speed of processor
p during time interval [t,t+1] where t is a non-negative integer.
Without loss of generality, we assume that the speed of each
processor does not vary during time interval [t,t+1] for every t
by adopting enough short time as the unit time. We also
assume that we cannot know the value of any s(p,t) in
advance. s(p,t) may be zero if the load by the original users is
very heavy or the processor is powered off. For simplicity,
processor addition, processor deletion, and any failure are not
considered here.

2.2 Total Processor Cycle Consumption (TPCC)

With the above constraints in a grid computing
system, we can be sure that the TPCC of a grid is always
greater than parallel and distributed computing systems [5].
The TPCC of parallel or distributed computing system is
always going to be nL, Where n is the total number of tasks
that are to be fed to the grid. How far the is TPCC of our
algorithm from the ideal case of parallel and distributed
computing system is our subject of interest. In this work we
finally prove that the TPCC is going to be just a logarithmic
factor higher than the ideal case. We shall show here that the
TPCC of parallel and distributed computing system is nL. In
parallel and distributed computing systems the total processor

allocation or the speed as defined above is known earlier
before the tasks are fed to the grid. Hence the speed is not a
dynamically varying parameter [6]. Hence it is always
possible to predict the TPCC even before the tasks are fed to
the grid.

III. THE PRIMITIVE ALGORITHM

3.1 A Schedule

Let T be a set of n independent tasks with the same
length L. Let m be a number of processors in a computational
grid. A schedule S [2] of T onto a grid with processors is a
finite set of triples (v,p,t) and t is the starting time of task v.
A triple (v,p,t) means that the processor p computes the task v
between time t and time t+d where d is defined so that the
number of instructions computed by the processor p during the
time interval [t, t+d] is exactly L. We call t+d the completion
time of the task v. The starting time and completion time of a
task are not necessarily integral, though the processor cycles
(length of the task) is always integral.

3.2 Algorithm

Step 1: Assign the first m tasks the first m processors.
Step 2: Immediately after a processor becomes free, assign the
next task to that processor
Step 3: Repeat the above step until all the tasks are completed
Step 4: Makespan is the time of completion of the last task
Step 5: And TPCC is total number of instructions that the
processors are capable of executing till the Makespan.
The above algorithm is better understood with the help of
Figure 2.

3.3. Example

Here we consider a set of five tasks to be completed. Let
us assume that the task scheduler in its random brokering
according to the speed of computation allots these five tasks to
a computing element of the grid which has three processors.
These three processors are variable speeds which can be
known only after the execution of the tasks. The speeds which
are found out after all the tasks get over are shown in the
Table 1. Processor 1 at the first second (for simplicity sake
lets us consider one time duration as one second) can complete
a task of length 2, similarly processors 2 and 3 can complete
tasks of lengths 5 and 10 respectively in the first second. This
table data is purely random and varies from instant to instant.
This behavior is due to the fact that only excess resources are
given to the grid for usage.

Now once the tasks are fed to a computing element, as per

the algorithm the first m tasks are fed to the available m
processors. So, in our example the first three tasks are fed to
the first 3 processors. Task 2 gets completed quickly due to its
greater resource allocation to the grid at that particular period
of time. Immediately after task 2 gets completed, the next task
in the queue V4 is given to processor 2. Among all running
tasks, V3 completes next in processor 3 and hence task V5 is
allotted to processor 3. The schedule of T is shown in Table 1.

Fig. 2: Scheduling through primitive algorithm

Table1. Schedule of Tasks

IV. TASK REPLICA ALGORITHM

4.1 Task Replica Algorithm

In this section, dynamic scheduling algorithm mentioned
above is used as reference. If any one of the m tasks gets
completed, then the algorithm replicates the earliest
uncompleted arrived of the m tasks into the processor of the
task which completed at that instance of time.

If any of the task v of processor p gets completed, then the
algorithm saves the result of the task v and terminates any
existing replicas of v. The figure 3 explains how the proposed
algorithm works in case of 4 processor and 7 available tasks.

As shown in figure 3, the computing element in this example
has 4 processors and seven tasks in the queue which are to be
executed by the available processors. The initial allocation to
the processor proceeds the same way as the primitive
algorithm. Initially, the first four task are allotted to the
available 4 processors. Then task V2 gets completed and task
V5 is allotted to processor 2. Then V4 in processor 4 gets
completed and the next task in the queue V6 is fed to

processor 4. Then V5 in processor 2 gets over and task V7 is
allotted there. Thus far, this algorithm has proceeded the same
way as in the primitive algorithm. Now when a task gets over,
this algorithm replicates or duplicates the first task fed to the
grid that still remains incomplete.

Fig. 3: Scheduling process of Proposed Algorithm

4.2 Replication and Termination

In our case, when V3 gets over, the scheduler is left with

the job of replication. The scheduler decides on the task to be
replicated based on the first job fed to the grid that still
remains incomplete. In our case, V1 which is the first task fed
to the grid still remains incomplete. So, the scheduler
replicates a copy of V1 in processor 3 when V3 finishes. In the
figure 3, the replicas are given by ordinary variables and their
corresponding replicas given by complemented variables.
Then the task V1 gets completed in processor P1 itself . In this
case, the scheduler kills or terminates the replica. By this way,
we make sure that there is no wastage of processor time due to
the replicas created. In case the replica is completed first, the
scheduler will kill or terminate the original process wherever it
is at that point in time.

Now, the scheduler has two free processors 1 and 3. It

feeds the first fed still incomplete task V6 to the first processor
1 and the next incomplete task in the order of priority to
processor 3. In our case it is task V7. So, task V7 is fed to
processor 3. Now the original task V6 is completed in
processor 4, hence the replica in processor 1 is terminated
immediately. Again we have 2 free processors now (Once the
replication process starts the number of processors available is
always greater than 2). Now we are left with the only
incomplete task V7. This task is fed onto both the available
free processors 1 and 4. Note that the last task runs in all the
available processors after the last but one task gets completed.
Now if one of these four gets completed all the others are
killed.
These inferences can be drawn from the algorithm.

i. In the primitive algorithm we have considered, we
find that the resource remains unused for a long time.
During the course when the resource remains idle, the
local use of the resource may get reduced drastically
and it may produce huge processing capability, which
goes unused [4]. The algorithm we have suggested

makes a good use of the sudden rise in resource
processing capability.

ii. Replicas are created only for last (m-1) that are put

into the processors for scheduling.

iii. At any time instant, the difference of the size
between every pair of replica groups is at most one.

iv. We find that at no point of time, the processors

remains idle, where as in the previous case, during
the execution of last m task, some processors remains
idle, until the rest of the tasks are completed.

V. MATHEMATICAL ANALYSIS

The observations in Section IV lead to the following
mathematical bases for grid computing.

5.1 Calculation of TPCC

 For calculating TPCC, we have to calculate the
maximum number of instructions that will be executed in the
grid. This will include the original tasks replicas created if
any.

5. 2 Finding the total number of replicas

For finding the total no. of replicas we need to know the
total number of tasks that are actually getting replicated.
Observation 2 helps us in finding that.

Observation 2 follows from the task that replicas are created
only after the completion of (n-m) tasks and the next task.
Therefore the replicas are created only for the last (m-1) tasks.
For example, in a 9 task, 4 processor system initially it has to
put in grid all the 9 tasks before creating replicas. That can be
possible only if 5 tasks are fully complete. Then for the replica
of the first process to be created another one task has to get
over. Therefore it is impossible to create replicas for first 6
tasks. In other words, replicas are created only for m-1 last
tasks (in this case 3 last tasks).

 Observation 3 helps us in finding the maximum no.
of replicas that can be created for a task. We can be sure that
at a time t, before the completion of the mth last task, this
observation holds true. Now for proving that this observation
holds good for subsequent times as well, we use the tool the
tool of mathematical induction.

 According to the principle of mathematical induction,
If f(1) is true, f(n+1) is true if f(n) is true, then f is true for all
N.

Here since we know that the observation holds good at one
particular time instant t, we’ll assume that the result is true for
a time instant t’ and prove that the observation is true for a
later instant t’’.

At t’, we can expect 2 cases,

i. All replica groups are of the same size s.
ii. Some replica groups are of size s, and some s+1.

Let t’’ be the earliest completion time of a task after t’. Let
‘u’ be the completed task. Let I (respectively J) be the set of
the replica groups at time t’ with size s (respectively s+1)
except the instance group of ‘u’. Then at time t’’, the
algorithm terminates all the remaining task instances of ‘u’
and increases the number of replicas of the tasks which are not
completed until time t’’. Regardless of the size of the instance
group of ‘u’, first of all, the algorithm one by one increases
replicas of the tasks of which the instance group is in I. If free
processors remain after the size of every instance group in I is
increased by one, then the algorithm one by one increases
replicas of the tasks of which the instance group is in J. If free
processors still remain after the size of every instance group in
J is increased by one, then this algorithm one by one increases
replicas of the tasks of which the instance group is in I. The
algorithm repeats the above increment process until free
processors run out.

Hence we find that the observation is true for time t’’ when

we assume it is true for t’. Hence by Induction, the observation
holds good at all times. During the execution of the xth last
task, m task instances of exactly x tasks are being executed.
These m task instances include exactly x originals. From the
above statements we can judge that the number of replicas of a
task (excluding the originals) is given by (m-x)/x. From
observation 3, we shall find that this value can be exceeded by
1 at the maximum. Hence, the total number of replicas of the
xth last task is given as
Floor ((m-x)/x) <= Replicas <= ceil ((m-x)/x)
where the floor statement takes care of rounding decimals to
its nearest lower integer and the ceil, takes into account the
criterion specified by observation 3. So, total number of
replicas from the observation 2 can be given by

r = Σ replicas (summation of last tasks from 1 to m-1)
<=Σ ceil((m-x)/x) (summation of last tasks from 1 to m-1)
< Σ ((m-x)/x + 1) (summation of last tasks from 1 to m-1)

=Σ (m/x) (summation of last tasks from 1 to m-1)

VI. ANALYSIS

The TPCC of a schedule generated by our algorithm is atmost
(1+ (m ln(m-1)+m)/n) times the optimal TPCC.

6.1 Analysis Of TPCC Ratio Using Matlab

• If m is fixed, then the approximation ratio of RR decreases
suddenly with an increase in n.
• If n is fixed, then the approximation ration of RR increases
gradually with an increase in m. The above analysis can be
understood from the Table 2.
Figure 4 shows the variation of TPCC ratio with 4 processors
and variable number of tasks.

Fig. 4: Variation of TPCC ratio with m=4 and variable n.

Table 2: Processors and tasks

6.2 Simulation Results:

Input Considered:

Enter the No.of tasks 7
Enter the No.of Processors 4
Enter the processor weightage 0.4
Enter the processor weightage 0.8
Enter the processor weightage 0.1
Enter the processor weightage 0.5
Enter the length of the task 20
Enter the length of the task 20
Enter the length of the task 20
Enter the length of the task 20
Enter the length of the task 20
Enter the length of the task 20
Enter the length of the task 20

Observations from the simulation:

i. The task replica algorithm suggested by us utilizes
the available processor cycle at any instant of time
and the processors are not idle till the schedule gets
completed.

ii. The task utilization graph of the task replica

algorithm follows the TPCPS (Total processor cycle
consumption per second) till the schedule gets
completed.

Makespan of task replica algorithm is less than the primitive
algorithm. Figure 5 shows the task utilizations in primitive
and proposed algorithms.

Output Obtained:
Makespan in Primitive algorithm = 32
TPCC in Primitive algorithm = 318

VII. CONCLUSION

The obtained TPCC value is found to be slightly greater that

the ideal value nL. But the proposed algorithm reduces both
TPCC and makespan. Our future works include incorporating
the changes necessary for resolution of task dependency
problem in real time systems.

Table 3: Output Table

Fig. 5: Comparison of task utilizations in

primitive and proposed algorithm

VIII. REFERENCE

[1] Scheduling Algorithms for Grid Computing: State of the Art and Open

Problems. Fangpeng Dong and Selim G. Akl School of Computing

[2] Queen’s University Kingston, Ontario January 2006. Technical Report

No. 2006-504

[3] R. Buyya and D. Abramson and J. Giddy and H. Stockinger, Economic

Models for Resource Management and Scheduling in Grid Computing,
in J. of Concurrency and Computation: Practice and Experience, Volume
14, Issue.13-15, pp. 1507-1542, Wiley Press, December 2002.

[4] H. El-Rewini, T. Lewis, and H..Ali, Task Scheduling in Parallel and

Distributed Systems, ISBN: 0130992356, PTR Prentice Hall, 1994.

[5] D.P. Spooner, J. Cao, J.D. Turner, H. N. L. C. Keung, S.A. Jarvis and

G.R. Nudd, Localised Workload Management using Performance, in the
Proc. of the 18th Annual UK Engineering Workshop (UKPEW'
2002), University of Glasgow, UK, July 2002.

[6] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S.

Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Saho, S. Smallen, N.
Spring, A. Su and D. Zadorodnov, “ Adaptive Computing on the Grid
Using Apples” in IEEE Trans. On Parallel and Distributed Systems
(TPDS), Vol 14, No.4, pp. 369-382, 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

