
Exploitation of the Potential of Cell Architecture for
Parallel Random Number Generation

K.Gunaranjan and Pallav Kumar Baruah

 Dept. of Mathematics and Computer Science, Sri Sathya Sai University.

Abstract

 The Cell Broadband Engine Architecture designed by Sony, Toshiba and
IBM is a heterogeneous multicore processor. It has tremendous potential for
performing scientific computations. Random number generators are one of the most
common numerical library functions used in scientific applications[1]. SPRNG is a
widely used library for parallel random number generation. In this work, we ported
SPRNG onto the Cell Broadband Engine (Cell BE). We report optimizations that
enable SPRNG to perform an order of magnitude faster than the initial port, which
will help developers of computation-intensive numerical libraries to optimize their
code on the Cell BE processor. We have also added additional parallelization
strategies to SPRNG, and discuss the unsafe uses, which should be avoided. This will
enable users of random number generators to make more effective use of the libraries.

1. Introduction

The introduction of multi-core processors has opened up the possibility of

parallel computation on a single chip. The Cell Broadband Engine Architecture
provides supercomputing power on a single chip. It consists of a PowerPC core
(PPE), which acts as the controller for eight SIMD cores called Synergistic
Processing Elements (SPEs), which handle most of the computational workload.
At 3.2 GHz, each SPE gives a theoretical 25.6 GFlops of single precision
performance, giving it tremendous potential to perform scientific computations.

Scientific and technical computing problems, solved using stochastic
simulation-based computational methods such as Monte Carlo methods, are
based on random sampling. These methods require a random number generator
(RNG) of high quality that produces numbers at a high speed. Quality here refers
not only to the randomness properties of individual streams of random numbers
but to the correlation properties between streams that are used in parallel. The
Parallel Random Number Generators parallelize a sequential generator by taking
the elements of the sequence of pseudo-random numbers it generates and
distributing them among the processors. We will discuss the Leap frog facility
and Leap ahead facility in section 5.

The Scalable Parallel Random Number Generators Library (SPRNG) is a
set of libraries for scalable and portable random number generation, and has been
developed especially to suit large-scale, parallel Monte Carlo applications. It is an
easy-to-use package and runs on almost any computing architecture. SPRNG was
developed at NCSA and Florida State University. SPRNG provides a variety of

good quality sequential and parallel random number generators, with good
performance in terms of the number of random numbers generated per second.

We also report optimizations of one of the most popular SPRNG

generators, the Linear Congruential Generator (LCG), on the SPEs of the Cell
processor, that enable SPRNG to perform an order of magnitude faster than the
initial port.

2. Parallel Pseudo Random Number Generator and SPRNG

SPRNG [1] is a library of parallel RNGs which uses parameterization. Its
generators have been subjected to some of the largest tests of parallel random number
generators [2]. It also contains a variety of generators, so that users can verify their
results by comparing the results obtained from different generators. Each of these
generators has several variants which can be selected using certain parameters in an
initialization routine. SPRNG also contains a facility to dynamically create new
random number streams which will be different from streams on any other processor.
Furthermore, this is accomplished without any inter-processor communication.
SPRNG also contains a facility to checkpoint and load the state of random number
sequences in a machine independent manner. More details on SPRNG and on parallel
random number generation are available in [1,2,5,6].

3. Implementation of SPRNG on Cell

The Cell BE is an architecture for distributed computing and SPRNG
was designed to provide support for distributed multiprocessor streams. The
SPRNG on Cell BE is used mainly for applications that are parallelized and run
on more than one SPE. We used the SPE centric model where the PPE spawns
threads on the SPEs and then waits for the threads to complete. All the
computations are done on the SPEs. Each SPE calls a different random number
sequence and executes library calls sequentially with the random number
sequence associated with it.

The generators in SPRNG ported onto the Cell BE are given in the table

1.
.

Name Generator Period
LCG 48-bit Linear Congruential Generator 248

LCG64 64-bit Linear Congruential Generator 264

LFG Modified Additive Lagged Fibonacci
Generator

Up to 21310

MLFG Multiplicative Lagged Fibonacci Generator > 1023

CMRG Combined Multiple Recursive Generator 2219

 Table 1: Generators ported onto the Cell

We have also ported the test suite in SPRNG which can be used to test the
quality of parallel and sequential random number generators. The port also includes

applications built by SPRNG to test the correctness of the distribution and which time
each of the generators.

4. Optimizations

Here we report optimizations that were implemented to improve the
performance of LCG after the initial port of SPRNG on Cell. On building the SPRNG
library, executables are created to time each generator provided. A shell script called
timesprng is provided that will run each of these timing executables. The output will
give the time taken to generate a million random numbers and also the number of
random numbers generated per second, in millions . These results are based on the
timings in C programs. Table 2 has the results after the initial port of SPRNG onto
Cell.

Generator MRS
Integer 44 * 106/s
Float 45 *106/s
Double 45 *106/s

Table 2: Results after the Initial Port

 4.1 Array Implementation
 Here we implemented a facility which returns an array of numbers. This facilitates
some compiler optimizations, yielding better performance. Table 3 shows the
performance results for an array size of 8. One observation we made here is that the
optimal performance we reached with array size 8. The performance results for larger
array sizes were not so encouraging.

Generator MRS
Integer 65 *106

Float 67 *106

Double 60 *106

Table 3: Array Implementation (array size 8)

4.2 Optimized Multiplication routines
 Since the multiplication routines formed the core of the code, we optimized the 64-
bit multiplication using the algorithm that is similar to the conventional multiplication
performed by hand. We used code developed by Neil Costigen from Dublin City
University. This led to a improvement in the performance . The results are shown in the
table 4.

Generator MRS
Integer 400 * 106

Float 402 * 106

Double 400 * 106

Table 4: Optimized Multiplication routines

4.3 Vectorization based on using the Recurrence Relation

 In any random number generator, the state after any iteration depends on the value
of the previous state. Using the profiling tool on the SDK 2.1, it was observed that a large
fraction of time being stalled was due to data dependency . The recurrence relation can be
used to remove the data dependency that exists between iterations. This allows
computations for different iterations to be simultaneously done. Here we show the results
obtained for the LCG generator. The recurrence of the LCG is given by xi+1 = axi + b
mod 248, where xi are the states, and a and b are constants. This recurrence yeilds [3,4]
xi+1 = αxi + β mod 248, where α =a2 mod 248 and β=b + ab mod 248. The terms α and β
can be precomputed. Now, if we know x0 and x1, then we can, in principle,
simultaneously compute x2 and x3. We see that x3 can be computed independently of x2 .
This allows us to compute two terms every iteration. Vectorization was used to achieve
this. The results (table 5)obtained after this were very encouraging.

Generator MRS
Integer 449 * 106

Float 569 * 106

Double 465 * 106

Table 5: Vectorization using the recurrence relation

5. New Features
 In this section we discuss about some new features that have been added
to SPRNG i.e., Leap Ahead facility and Leap Frog Facility.

5.1 Leap Ahead Facility
 We Implemented the Leap Ahead Facility which helps with parallelization based
on the blocking strategy. It can help when a large number of streams is required, but
only a small amount of numbers from each stream is used. It is also very useful for
generators with large state space like the LFG i.e. If the user stores the initialization
parameters and the leap, we can reconstruct the sequence and move to the correct
position in the sequence.

5.2 Leap Frog Facility

 We implemented a new function sprng_leapfrog(void *p, int init_leap, int
subsequent_leaps). This causes the random number stream pointed to by p to leap to
a point init_leap elements away in the sequence. This is based on the Leap Ahead
Facility.

6. Conclusions and future work
 The CBEA has a growing range of development tools and has many standard

libraries. Optimal performance for any application can be achieved by exploiting the
functionality provided by these libraries and using the computational power of the
eight SPEs. The optimizations implemented by us increased the performance by an
order of magnitude compared with the initial porting. The optimization process

described here may benefit writers of other libraries for the Cell BE processor. We
have also added newer features into SPRNG which will enable a greater variety of
parallelization strategies.

As our future work, we plan to optimize the other generators and include the
additional features in them too.

7. Acknowledgements
 We thank Neil Costigan from Dublin City University for providing an

optimized implementation of 64-bit integer multiplication on the SPEs. We also
thank the Sony-Toshiba-IBM Cell Center of Competence at Georgia Tech for
providing use of their IBM QS20 Cell blades, and IBM for providing access to their
Cell blades under the VLP program. Most of all, we express our gratitude to Sri
Sathya Sai Baba, the chancellor of Sri Sathya Sai University, for bringing us all
together to perform this work

8. References

1) M. Mascagni and A. Srinivasan, SPRNG: A Scalable Library for
Pseudorandom Number Generation, ACM Transactions on Mathematical
Software, vol 26 (2000) 436-461.
2) A. Srinivasan, M. Mascagni, and D.M. Ceperley, Testing Parallel Random
Number Generators, Parallel Computing, vol 29 (2003) 69-94.
3) S.L. Anderson, Random Number Generators on Vector Supercomputers and
Other Advanced rchitectures, SIAM Review, vol 32 (1990) 221-251.
4) D.E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, third dition, Addison-Wesley, 1998, pages 10-11.
5) M. Mascagni and A. Srinivasan, Parameterizing Parallel Multiplicative
Lagged-Fibonacci Generators, Parallel Computing, vol 30 (2004) 899-916.
6) A. Srinivasan, D.M. Ceperley, and M. Mascagni, Random Number Generators
for Parallel Applications, in Advances in Chemical Physics, Volume 105, Monte
Carlo Methods in Chemical Physics, Editors: D. Ferguson, J.I. Siepmann, D.G.
Truhlar, John Wiley and Sons,Inc, 1999, pages 13-36.

