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Abstract:

Radix sort algorithm does not perform comparisons between input elements. Due to
its enormous data parallelism it is more suitable for sorting data in parallel. In this work
we suggest an optimization for the parallel radix sort algorithm, which reduces the time
complexity of the algorithm and also ensures that the load on all the processors is
balanced. We have implemented it on the “Cell processor” which the first
implementation of the Cell Broadband Engine Architecture (CBEA) designed by the STI
(Sony, Toshiba and IBM). It is a heterogeneous multi-core processor system. We have
been able to sort 102400000 elements in 0.49 seconds at a rate of 207 Million/sec.

1. Introduction
a. Radix sort

Radix sort is a multiple-pass algorithm, which distributes each item to a
bucket according to part of the item's key, beginning with the least significant
part of the key. After each pass, items are collected from the buckets, keeping
the items in order, then redistributed according to the next most significant part
of the key.

Here is an example of radix sort algorithm. Let {164, 37, 395, 12, 9, 982,
733, 112, 428, 377, and 55} be the numbers to be sorted in the ascending order.

Initially Pass 1 Pass 2 Finally

Here we observe that elements are moved to their respective buckets
without any comparisons made between any two elements, providing data
parallelism. The cell processor’s SPEs have little support for techniques like

1  6 4
0  3 7
3  9 5
0  1 2
0  0 9
9  8 2
7  3 3
1  1 2
4  2 8
3  7 7
0  5 5

0  1 2
9  8 2
1  1 2
7  3 3
1  6 4
3  9 5
0  5 5
0  3 7
3  7 7
4  2 8
0  0 9

0  0 9
0  1 2
1  1 2
4  2 8
7  3 3
0  3 7
0  5 5
1  6 4
3  7 7
9  8 2
3  9 5

0  0 9
0  1 2
0  3 7
0  5 5
1  1 2
1  6 4
3  7 7
3  9 5
4  2 8
7  3 3
9  8 2



speculative execution and branch prediction, which makes radix sort a better
option for the cell which involves no comparisons.

Radix sort is performed on the binary value of the elements, for example
in a 32 bit unsigned integer, each pass could sorts the data with 8 bits at a time,
so there are 4 passes each with 256 buckets. The following steps are involved
in radix sort.
1. Count the number of elements in each of the 256 buckets for all the 4

passes.
2. Based on the bucket count of the current pass assign starting addresses for

each bucket for the current pass.
3. Move the elements to their respective buckets.
4. Perform step 2 and 3 for other bytes too, ending with the most significant

byte.

b. Parallel radix sort
Let N be the number of elements and P the number of processors, the

following are the steps performed,
1. To each processor allocate N/P elements.
2. Each processor now calculates the bucket counts for the buckets.
3. Using this information from every processor, the starting addresses

for each bucket of every processor is calculated by the controlling
processor.

4. Each processor now moves their data accordingly.
5. Perform steps 1 through 4 for all the four bytes starting from least

significant byte.
Here, unlike the serial algorithm we may not be able to calculate the

bucket counts for all the four passes in the beginning itself, thus each processor
brings in its data once for counting, once for moving, and writes back the data
once, i.e. data is moved three times between main memory and the local memory,
making it 12 times in all. Our algorithm aims at eliminating three of these passes,
thus reducing the time complexity of the algorithm.

c. Cell Broadband Engine Architecture



The PPE accesses the main storage (the effective-address space) with load and
store instructions, the SPEs, in contrast, access main storage with Direct Memory Access
(DMA) commands that move data and instructions between main storage and a private
local memory, called a local store (LS). The eight identical SPEs are Single-Instruction,
Multiple-Data (SIMD) processor elements that are optimized for data-rich operations
allocated to them by the PPE. Each SPE contains a RISC core, 256-KB software-
controlled local store (LS) for instructions and data, and a 128-bit, 128- entry unified
register file.

2. The proposed algorithm

  In our algorithm instead of performing the counting after the elements
have been moved back to memory at the end of a pass, we calculate before sending
the data, i.e. each processor maintains an array next_pass[where][what] where where
is , i.e. it maintains the information of what data of the next pass is sent to where in
the memory of this pass, we now know what data is where, which is all we need to
calculate the starting addresses for each bucket of each processor for the next pass.
The following are the steps performed

1. Allocate each processor N/P elements.
2. Each processor brings in its data and performs counting.
3. Destination addresses for the first pass is calculated.
4. Data is brought in, and before sending we calculate the radix for the next byte,

i.e. let index be the radix for the current pass and next_index be the radix for
the next pass, we increment the value next_pass[index][next_index].

5. At the end of this pass data is sorted based on least significant byte.
6. Using each processor’s next_pass array we calculate starting addresses for the

next pass, as we now know what elements are present where in the memory.
7. With these addresses the processors start off moving data.

In all the data is moved to processors once for counting, and for each pass
brings in data once and wrights back the data one, making it 1+4+4=8 as opposed
to 12 in the usual parallel radix sort.

3. Implementation Details
We have chosen to sort 16 bit unsigned short int with 4 bits at a time. It

can be shown that it has the same computation and communication complexities
as that of sorting 32 bit unsigned int with 8 bits as radix. The problem with sorting
32 bit Unsigned int is that the next_pass array needs to be of dimension 256x256
which is too big to fit in the Local store. A work around for this issue is part of
future work.



4. Results

Time taken in seconds

Figure 1 shows the effect of parallelization for large data size. Figure 2
shows that the speed has nearly reached theoretical speedup. The table shows the
time taken in seconds to sort elements and the number of SPEs used.

10240 1024000 4096000 40960000 102400000
1 SPE 0.000872817 0.0738378 0.301164 2.93204 7.53521
2 SPEs 0.000566699 0.037794 0.150792 1.50938 3.77055
4 SPEs 0.000830772 0.0192813 0.075742 0.0755973 1.86562
8 SPEs 0.00450328 0.0107314 0.0403612 0.3814319 0.950866

16 SPEs 0.0160437 0.0201734 0.0333049 0.203431 0.493363
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5. future work
a. To move the computations performed by the PPE completely to SPEs.
b. To calculate the radix we need to perform a shift and a logical AND, this

operation can be vectorized.
c. Currently we have not used multiple buffering. We have used blocking get

and put commands. The non blocking MFC commands have the following
requirements.

1. DMA size: needs to be a multiple of 16 bytes.
2. DMA source and destination addresses: needs 16 bytes

alignment.
Here we propose a way to meet these requirements,
First the two main buffers in the MM are aligned using the compiler’s align
attribute, then whenever an SPEs need to send a bucket say b it appends b.count
% 4 bogus data to the bucket. This helps us meet requirement one, this also makes
the next bucket’s starting address to be aligned by 16 bytes. We ensure in the next
pass that this bogus data is processed by performing the same calculation again.

These three have been implemented in the single SPE code, in future we shall
extend it to multiple processors.
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