
Performance analysis of Particle in Cell Electromagnetic code using
Infiniband Interconnect

G. Singh, N. Sakthivel and S. Chaturvedi

Bhabha Atomic Research Centre, Trombay, Mumbai
{svel@ipr.res.in}

Abstract

 Particle in Cell (PIC) codes are
widely used in the simulation of many
plasma related systems (E.g.: Laser
plasma interactions, high power
microwave sources). A detailed
simulation of these systems requires
parallel computing facility with faster
CPUs with efficient interconnects. We
have setup a 33 node Xeon (Dual socket
and Dual core) cluster with double data
rate Infiniband interconnect in addition
to our existing 144 node Pentium-4
cluster with gigabit interconnect. The
basic network performance parameters
(latency and bandwidth) and the PIC
code performance in 32 node Xeon
cluster with double data rate Infiniband
interconnect has been studied. The
studies carried out using 2 cores per
node and 4 cores per node are reported.

Hardware Setup

 We have setup a 33 node Intel
Xeon (Dual Socket and Dual core) with
Silverstorm single port double data rate
Infiniband interconnect. The Infiniband
Host Channel Adapater is plugged into
the PCI-Express (8X) slot. The
motherboard is Intel S5000PAL with
Intel 5000P chipset. Each node is
equipped with 4 GB of FB-DIMM
memory. All machines are connected to
a Silverstorm-9080 switch, which
provides a theoretical uni-directional

bandwidth of 20 Gigabits per second
between two nodes. The uni-directional
usable bandwidth becomes 16 Gigabits
per second due to 8B/10B encoding. The
operating system is Scientific Linux 4.0
[1] having 2.6.9-42 Linux kernel. The
login node, which is also the
GLUSTERFS [2] based file server for
the cluster has 8 GB of main memory.
The MVAPICH implementation is from
Ohio State university [3] mvapich-0.9.7
compiled with gcc-3.4.6-3.x86_64.

Infiniband Latency and Bandwidth

 The Infiniband specification [4]
defines a switched, high bandwidth, low
latency fabric for both inter-process and
I/O communication. The MPI-latency
and the MPI-bandwidth achieved using
the codes available in OSU web page [5]
is given in figure 1 and 2. This
benchmark codes uses the blocking
MPI_send and MPI_receive [6]
functions for measuring the latency and
bandwidth.

 Between two of the Xeon
Compute nodes, the latency for 4096
Bytes message is 11.75 micro-seconds.
The 1-byte message latency is 3.19
microseconds. A maximum bandwidth
of 1019 MB/sec was achieved for 4096
Bytes message.

Figure 1: MPI level latency vs Message
size

Figure 2: MPI level uni-directional
bandwidth vs Message size

Particle in Cell code Description

Particle in Cell (PIC) codes are
widely used in the simulation of many
plasma related systems (E.g.: Laser
plasma interactions, high power
microwave sources). The PIC code
solves the Maxwell’s equations on a
predefined grid using finite difference
time domain (FDTD) method. The
plasma species are considered as a
macro particle, which in-turn consists of
a group of particles (electron or ion).
The evolution of the macro particles in
time is simulated using the Lorentz force
equation and the self-consistent
electromagnetic field.

A three dimensional PIC code
has been developed and parallelized
using MPICH. The code is parallelized
in one-direction, however, the choice of
direction (X or Y or Z) can be chosen
during startup. The accuracy of the
simulated system depends upon the
number of simulation particles used as
well as the spatial resolution used for
calculating the electromagnetic fields.
Hence, the simulation of realistic
systems, need very large number of
macro particles and better spatial
resolution. This demands huge
computational requirement in-terms of
faster CPUs and efficient interconnects.

PIC code parallelization method

 The PIC code solves two types of data
types, one is related to field components
and the other related to macro particle
parameters. Based on data types, two
types of decomposition are required viz.,
the field decomposition and the particle
decomposition. In field decomposition
the computational box is divided into
non-overlapping sub-domains, with
approximately equal number of grid
points in each domain. In particle
decomposition, the Eulerian
decomposition technique is used. In this,
each processor manages only those
particles, which lie within its sub-
domain. Each sub-domain may have
different number of macro-particles
during the time-evolution.

 The parameters related to grid in the
neighboring layers of each sub-domain
and the parameters related to macro-
particles, which crosses their sub-
domain during each time step form the
MPI Message. Hence the message size
between any two processors may vary.

PIC code performance

 In this study, the number of cells in the
X-direction, Y-direction and Z-direction
are 4000 and 2000 and 1 respectively.
One cell along the Z-direction makes the
code as two-dimensional. The
parallelization is done along X-direction.

Figure 3 Speed ups vs Number of
processors with 2 cores per node and 4
cores per node used.

Figure 3 shows the speed ups

while using 2 cores per node and 4 cores
per node. The speed up is same for both
the cases up to 16 processors. However,
when the number of processors is
increased to 64, use of 2 cores per node
is faster by a factor of 1.3. This may be
due to more contention for cache and
memory bandwidth.

 A total of around seven MPI_Send,
one MPI_Sendrecv, one MPI_Allreduce,
calls are used during each time step and
total of six MPI_Send and one
MPI_Sendrecv calls are used initially at
tome 0 for message exchange. The total
number of bytes exchanged between
processes per time step is around 192 kB
to 188 kB depending on the number of
processors. This variation is due to
variations in the number of macro-
particles that crosses each sub-domain at
each time step as explained above. The

total number of bytes exchanged at every
time step vs time is shown in Figure 3.

Figure 4: Message Size vs Time in PIC
simulation

Table 1: Total network latency and run
time

Procs.

TBytes Total latency
(milli-second)

Run
time
(min.)

8 196244 7.4 61
16 194136 6.4 33
64 192436 4.5 10
TBytes - Total bytes transferred per time step

Table 1 presents the network latency and
run time of our PIC code when 2 cores
per node is used. The total latency refers
to the total time taken for a process,
which communicates with the
neighboring process in the other node
while using six MPI_Send calls. The toal
number of bytes that got transferred is
given by TBytes. This shows that the
total latency decreases with the decrease
in the number of bytes transfer.
However, a detailed analysis of each
MPI_send with its message size and
latency is required to have a comparison
with latency number presented in Figure
1.

Summary

A Particle in Cell (PIC) code has
been parallelized using MPICH and its
performance using Infiniband
interconnect has been presented. The
basic network performance parameters
(latency and bandwidth) and the PIC
code performance in 32 node Xeon
cluster with double data rate Infiniband
interconnect are reported.

REFERENCES

1.https://www.scientificlinux.org

2.http://www.gluster.org – GlusterFS

3.http://mvapich.cse.ohiostate.edu

4. Infiniband Trade Association,
Infiniband Architecture Specification,
Release 1.1, November 6th, 2002.

5.http://mvapich.cse.ohiostate.edu/bench
marks/ - Benchmark codes

6.Message Passing Interface Standard
and Forum. http://www-
unix.mcs.anl.gov/mpi

https://www.scientificlinux.org/
http://www.gluster.org/
http://mvapich.cse.ohio/
http://mvapich.cse.ohio/
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi

	Particle in Cell code Description
	REFERENCES

