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1. Introduction

Computation communication overlap (CCO) is an old problem as far as distributed computation is concerned. The objective of 
CCO is to pack in as much computation as possible between a non-blocking communication call ( ex: MPI_Isend ) and its 
corresponding blocking wait primitive (ex: MPI_Wait). This , in general, results in lower execution time. However, the problem 
of extracting CCO automatically from an application has not been tackled satisfactorily in the MPI (or similar) programming 
space. Several reasons exist for this. Principal among them is the non-trivial nature of transforming an MPI based program (or 
similar environments like UPC) for exploiting overlap. Previous efforts in the CCO space have either concentrated on fine-
grained architectures or specifically used languages like HPF. Only recently have there been some studies to look at coarse-
grain CCO from the perspective of a compiler or other automatic transformers [2,3]. In this work we will look at some MPI-
based NAS benchmarks to see how we can use software pipelining (SWP) at the program level to achieve computation-
communication overlap. Program-level software pipelining will imply application of software pipelining transformation on some 
of the loops of the high-level code itself, in order to extract as much CCO as possible. These loops are the ones which contain 
communication primitives like MPI_Send/Recv or their non-blocking counterparts like MPI_Isend/Irecv and the matching 
MPI_Waits. We make the distinction clear as software pipelining is usually carried out in the low-level-optimizer component of 
an optimizing compiler only after pseudo-machine instructions have been generated [4]. 

The main motivation of this work is to explore whether software pipelining at the program level can exploit opportunities in 
highly-tuned benchmarks like NAS. That can provide a good indicator for general HPC code or other benchmarks. Optimizing 
compilers and automatic transformers can then be re-tooled to utilize their analyses to convert MPI-based code such that 
software pipelining can be applied in a transparent manner as a high level transformation. This will help extract a greater level 
of overlap than what exists in an application before the pipelining transformation is applied - without programmer intervention.

2. Program-level Software Pipelining
In this work the goal is to identify hot loops that carry MPI communication primitives, unroll them by a small constant factor ( in 
our experiments we have used a unroll factor or 2 ) and then reorder the communication primitives so that overlap can be 
achieved.  We have devised a  new method called  conditional  software  pipelining that  allows us  to  carry  out  software 
pipelining even when all the data dependences are not known fully at compile time.

Conditional Software PipeliningConditional Software Pipelining

We will illustrate it more vividly with this loop from the NAS benchmark, CG. This pattern can be found frequently in cg.f

do i = l2npcols, 1, -1

    mpi_irecv ( r(reduce_recv_starts(i)),
                         reduce_recv_lengths(i),
                          …
                     )

    mpi_send ( w(reduce_send_starts(i)),
                           reduce_send_lengths(i),
                           …
                     )

    mpi_wait(recv…)

    do j  = send_start, 
               send_start+reduce_recv_length(i)-1
        w(j) = w(j) + r(j)
    end do
end do

do i = l2npcols, 1, -2
    mpi_irecv ( r(reduce_recv_starts(i)),
                         reduce_recv_lengths(i),
                          …
                     )
    mpi_send ( w(reduce_send_starts(i)),
                           reduce_send_lengths(i),
                           …
                     )
    mpi_wait(recv…)
    do j  = send_start, 
               send_start+reduce_recv_length(i)-1
        w(j) = w(j) + r(j)
    end do
    mpi_irecv ( r(reduce_recv_starts(i-1)),
                         reduce_recv_lengths(i-1),
                          …
                     )
    mpi_send ( w(reduce_send_starts(i-1)),
                           reduce_send_lengths(i-1),
                           …
                     )
    mpi_wait(recv…)
    do j  = send_start, 
               send_start+reduce_recv_length(i-1)-1
        w(j) = w(j) + r(j)
    end do
end do

After unrolling twice

Fig 1
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Hoist irecv before “do” 
But what about data 
dependence due to “r”?



After unrolling the loop shown on the left hand side of Fig 1 twice, we notice that we can hoist the irecv of the i-1th 
iteration(note that the loop moves backward) to the point above the computation of w and just after the wait of the irecv for the 
ith iteration. However, the second irecv may overwrite (partially or fully) the r buffer which may result in wrong computation of 
w, when it is hoisted to the position shown. To tackle the possible overwrite problem ( due to the presence of a possible anti or 
WAR dependence ) we guard the irecv code when hoisted. We also leave a guarded copy of irecv at its original place but with 
the guard condition being the complement of the condition used in the hoisted irecv. DoesRangeOverlap(r1,r2) checks 
whether r1 ∩r2 != Φ. Here r1 and r2 represent the array access regions of r.

Now is the time to peel the first iteration of the loop and create a kind of prolog/epilog and the kernel ( as in
software pipelining ). The peeled and “pipelined” code will look like this:
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do i = l2npcols, 1, -2

    mpi_irecv ( r(reduce_recv_starts(i)), …)
    mpi_send ( w(reduce_send_starts(i)),…)
    mpi_wait(recv…)

    R1 = {send_start, reduce_recv_length(i) +  send_start -1}
    R2 = {reduce_recv_starts(i-1), reduce_recv_lengths(i-1) + reduce_recv_starts(i-1)}
    // condition code added in case there is a dependence
    if  ( ! DoesRangeOverlap(R1,R2) )
        mpi_irecv ( r(reduce_recv_starts(i-1),…)

    do j  = send_start, 
               send_start+reduce_recv_length(i)-1
        w(j) = w(j) + r(j)
    end do
    // condition code added in case there is a dependence
    if ( DoesRangeOverlap(R1,R2))
        mpi_irecv ( r(reduce_recv_starts(i-1),…)

    mpi_send ( w(reduce_send_starts(i-1),…)
    mpi_wait(recv…)
    do j  = send_start, 
               send_start+reduce_recv_length(i-1)-1
        w(j) = w(j) + r(j)
    end do
end do

// prolog of Software-Pipelined Loop
mpi_irecv ( r(reduce_recv_starts(l2npcols)), …)
mpi_send ( w(reduce_send_starts(l2npcols)),…)

// start kernel of Software-Pipelined Loop
do i = l2npcols, 2, -1    // do one iteration less
    mpi_wait(recv…)

    R1 = {send_start, reduce_recv_length(i) +  send_start -1}
    R2 = {reduce_recv_starts(i-1), reduce_recv_lengths(i-1) + reduce_recv_starts(i-1)}

    if ( ! DoesRangeOverlap(R1,R2) )
        mpi_irecv ( r(reduce_recv_starts(i-1),…)

    do j  = send_start, 
               send_start+reduce_recv_length(i)-1
        w(j) = w(j) + r(j)
    end do

    if ( DoesRangeOverlap(R1,R2))
        mpi_irecv ( r(reduce_recv_starts(i-1),…)

    mpi_send ( w(reduce_send_starts(i-1),…)
end do 
// end kernel of Software-Pipelined Loop

// epilog  of Software-Pipelined Loop
mpi_wait(recv…)
do j  = send_start, 
               send_start+reduce_recv_length(i)-1
        w(j) = w(j) + r(j)
end do
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The unrolled and pipelined loop can now be seen as one where the irecv of iteration i-1 overlaps with the computation of w for 
iteration i. This also increases the distance between the irecv and its corresponding wait. This allows for more computation to 
be sandwiched between the irecv and wait leading to better overlap. If you notice the original program carefully we can see that 
the CCO is only between the irecv and its corresponding wait and the only thing that happens between these two is a send. 
We can visualize the original loop as a string where the following pattern repeats ( where IR=mpi_irecv, S=mpi_send, 
W=mpi_wait and C=computation ).

The original loop is on the left hand side(lhs), while the unrolled and pipelined loop is on the right hand side(rhs). The CCO has 
increased from the lhs where only Si is active between the IRi and Wi, to the rhs where CCO is due to Ci + Si between IRi-1 and 
Wi of the next iteration. The original loop computation has been perturbed due to the introduction of the DoesRangeOverlap 
computation. We can optimize this further by hoisting the entire range computation as a separate loop invoked just prior to the 
main loop. This will cause the original loop to be perturbed very lightly. The new-look loop will now be as follows:

Unconditional Software PipeliningUnconditional Software Pipelining

Now, we will look at a subroutine from the NAS benchmark BT/x-solve.f . This subroutine demonstrates a couple of 
complications, chief among them being: a) The isend/irecv codes are embedded within calls and b) There is a conditional 
inside the loop. Conditionals inside loops make software pipelining a more complex venture when attempted automatically. 

3

IRi   Si  Wi  Ci IRn  Sn  Wi  IRi-1  Ci  Si   W1  C1 

do i = l2npcols, 1, -1
    R1 = {send_start, reduce_recv_length(i) +  send_start -1}
    R2 = {reduce_recv_starts(i-1), reduce_recv_lengths(i-1) + reduce_recv_starts(i-1)}
    RANGETABLE(i) = DoesRangeOverlap(R1,R2)
end do
//prolog
mpi_irecv ( r(reduce_recv_starts(l2npcols)), …)
mpi_send ( w(reduce_send_starts(l2npcols)),…)
//kernel
do i = l2npcols, 2, -1
    mpi_wait(recv…)
    if  ( ! RANGETABLE(i) )
        mpi_irecv ( r(reduce_recv_starts(i-1),…)

    do j  = send_start, 
               send_start+reduce_recv_length(i)-1
        w(j) = w(j) + r(j)
    end do
    if ( RANGETABLE(i))
        mpi_irecv ( r(reduce_recv_starts(i-1),…)

    mpi_send ( w(reduce_send_starts(i-1),…)
end do
//epilog
mpi_wait(recv…)
do j  = send_start, 
               send_start+reduce_recv_length(i)-1
        w(j) = w(j) + r(j)
end do

do stage = 1, ncells
    c = slice(1,stage)
     isize =  …  jsize =   ksize = 

     if ( stage .eq. ncells ) then last = 1 else last = 0 endif
     if ( stage .eq. 1 ) then
         first = 1
         call lhsx( c )                                         // lhs = …
         call x_solve_cell ( first, last, c )            // lhs = … rhs = …
     else
          first = 0
          call x_receive_solve_info(recv_id,c ) // calls mpi_irecv ( out_buffer…)
          call lhsx(  c )                                       // lhs = …
        
          call mpi_wait ( send_id, … )               // wait for the  prev iterations’ mpi_isend
          call mpi_wait ( recv_id, … )                // wait for the mpi_irecv

          call x_unpack_solve_info ( c )            // lhs = out_buffer, rhs = out_buffer
          call x_solve_cell ( first, last, c )           // lhs = …, rhs = …
     endif
      if ( last .eq. 0 ) call x_send_solve_info( send_id, c ) // in_buffer = …, mpi_isend(in_buffer…)
enddo
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Notice that the conditionals are such that all of them can be removed by peeling some iterations either at the start of the loop or 
at the bottom to get a loop without any conditional. The loop is then unrolled by 2 to produce the code below.

In this case, the x_receive_solve_info(…) can be hoisted to be positioned after the call to x_unpack_solve(…). We cannot hoist 
it further without using a different buffer ( and thus breaking the WAR dependence ).  The s/w pipelined loop will now look like 
this:
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do stage = 2, ncells-1,2
     c = slice(1,stage) isize =  …  jsize =   ksize = 

     last = 0     first = 0
     call x_receive_solve_info(recv_id,c ) // calls mpi_irecv ( out_buffer…)
     call lhsx(  c )                                       // lhs = …
        
     call mpi_wait ( recv_id, … )                // wait for mpi_irecv

     call x_unpack_solve_info ( c )            // lhs = out_buffer, rhs = out_buffer
     call x_solve_cell ( first, last, c )          // lhs = …, rhs = …

     call mpi_wait ( send_id, … )               // wait for the prev iterations’ mpi_isend
     call x_send_solve_info( send_id, c ) // in_buffer = …, mpi_isend(in_buffer…)
     c = slice(1,stage+1) isize =  …  jsize =   ksize = 

     last = 0     first = 0
     call x_receive_solve_info(recv_id,c ) // calls mpi_irecv ( out_buffer…)
     call lhsx(  c )                                       // lhs = …
        
     call mpi_wait ( recv_id, … )                // wait for mpi_irecv

     call x_unpack_solve_info ( c )            // lhs = out_buffer, rhs = out_buffer
     call x_solve_cell ( first, last, c )          // lhs = …, rhs = …

     call mpi_wait ( send_id, … )               // wait for the last mpi_isend
     call x_send_solve_info( send_id, c ) // in_buffer = …, mpi_isend(in_buffer…)
end do

Fig 6
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3. Experimental Results and Future Work

Experiments were conducted using hand-changed NAS benchmarks on a 512 node BlueGene/L machine. The results shown 
below are for the benchmark BT class-C. We see small improvements in performance ( up to 1.3%+ ) for all configurations 
even for such a highly tuned benchmark as BT. The x-axis shows the number of processing nodes used ( BT requires a square 
number ) while the y-axis provides the percentage improvement over non-SWP code.

Future work involves incorporating program level software pipelining in an optimizing compiler and see the effects of the 
transformations on a larger set of benchmarks and applications. This will provide a better understanding of whether automatic 
program-level software pipelining can be used to extract higher computation-communication overlap from MPI applications in a 
sustained manner.
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