
Performance Modeling Based Scheduling and Rescheduling of
Parallel Applications on Computational Grids

H.A. Sanjay Sathish Vadhiyar

Supercomputer Education and Research Centre
Indian Institute of Science
Bangalore - 560012, India

{sanjay@rishi.,vss@}serc.iisc.ernet.in

Abstract
Computational Grids consist of both dedicated and non-
dedicated clusters. For effective mapping of parallel appli-
cations on grid resources, a grid metascheduler has to eval-
uate different sets of resources from different clusters. In or-
der to aid the metascheduler to evaluate a set of resources
for the execution of a parallel application, we have devel-
oped performance modeling strategies to predict execution
times of the application on the set of resources. Our strate-
gies adapt to changing network and CPU loads on the grid
resources. Our strategies give less than 30% average percent-
age prediction errors in all cases, which, to our knowledge, is
the best reported for non-dedicated environments. We have
also developed scheduling strategies that use these predicted
execution times in order to determine best schedules for a
parallel application. For applications consisting of multiple
phases, we plan to use phase detection techniques to auto-
matically divide the application into multiple phases, and to
use our performance modeling strategies to derive per-phase
predicted execution times. These per-phase predicted times
will be used by a rescheduler framework to migrate an exe-
cuting application to a different set of resources as the appli-
cation reaches a new phase.

1. Introduction
Many computational grid frameworks are composed of mul-
tiple distributed sites. Each site has one or more clusters or
Massively Parallel Processors (MPPs) with each cluster con-
sisting of a set of homogeneous machines. Some of these
clusters are dedicated batch systems while others are time-
shared non-dedicated systems. Jobs submitted to a grid are
handled by a matascheduler which interacts with the local
schedulers of the clusters for scheduling jobs to the individ-
ual clusters.

Grids have been found to be powerful research-beds for
execution of various kinds of parallel applications. Tightly-
coupled applications exhibit poor performance when exe-
cuted across multiple clusters due to low-speed network
links between the clusters. Hence tightly-coupled applica-

tions are typically executed within a single cluster. When a
tightly-coupled parallel application is submitted to a grid, the
metascheduler has to choose a set of resources from a cluster
for application execution. The metascheduler, with the help
of local schedulers, has to evaluate different candidate re-
source sets, with each candidate set consisting of resources
from a cluster, and select the most suitable resources for ap-
plication execution. The candidate resource sets are mostly
evaluated in terms of predicted execution times of the appli-
cation on the candidate resources and the resource set with
the minimum predicted execution time is chosen for appli-
cation execution. Thus, models that predict execution times
of the parallel applications on a set of resources and a search
procedure (scheduling strategy) which selects the best set
of machines within a cluster for application execution are
of importance for enabling tightly coupled applications on
grids.

In this work, we have developed a comprehensive set of
performance modeling strategies [13, 17] to predict execu-
tion times of tightly-coupled parallel applications on a set of
resources in a dedicated or non-dedicated cluster with the
purpose of aiding grid metascheduler in making schedul-
ing decisions. We have also implemented a set of schedul-
ing strategies to select the best set of resources for applica-
tion execution. We plan to extend this work for large scien-
tific applications where the computation and communication
complexities can vary in different phases of application exe-
cution and where the amount of computations and communi-
cations within a phase can be non-uniform among different
processors. We describe the plans for performance modeling
multi-phase applications and rescheduling the applications
to different sets of resources during phase transitions.

2. Related Work
Most of the existing modeling strategies assume uniform
loading conditions on the systems when the experiments for
modeling are conducted and use the models to predict ex-
ecution times for large problem sizes and/or larger number
of processors for the same loading conditions [1, 3, 10, 11,

15]. This assumption is unrealistic in non-dedicated environ-
ments. Some modeling methods also require analytical mod-
els expressing the computation and communication charac-
teristics of the applications in order to predict the execution
times of the applications [1,11,14,15]. Building robust ana-
lytical models require detailed knowledge of the applications
and such knowledge is available only with the application
developers. Some of the existing efforts for non-dedicated
environments can deal with different loading conditions dur-
ing training the models and predictions, but require the loads
to be constant during an application execution [2, 3]. The
work by Schopf and Berman [14] predicts execution times
of the applications when the external loads can change dur-
ing the application executions, but require detailed analyti-
cal models. Our modeling strategies work for non-dedicated
environments where the loads on the machines can vary dur-
ing the execution of the application. Our models work with
the executable binaries for the applications. Except for the
minimum problem size, our models do not need any other
knowledge about the applications.

Most of the existing search procedures will address
scheduling of multiple jobs, and on dedicated environment.
But our goal is to schedule single job on a non-dedicated
multi-cluster environment. The work by Nudd et. al. [8]
considers scheduling on multi-cluster environment, but their
technique addresses scheduling of multiple jobs on uni-
form loading conditions. There are few efforts that sched-
ule tightly coupled parallel applications using performance
models [7, 18]. Unlike these efforts, our scheduling strate-
gies are tightly integrated with the performance models. Our
strategies not only use the performance models for evalu-
ations of schedules, but also for guiding the search of the
schedules.

Existing work on detecting and predicting phases of a
multi-phase application are mostly for sequential applica-
tions and parallel applications with simple models [5, 12].
The existing rescheduling efforts for tightly coupled parallel
applications were built for specific applications [4, 9].

3. Performance Modeling Based
Metascheduler Framework

Our metascheduer framework is illustrated in Figure 1.
When a tightly-coupled parallel application is integrated
into the grid by the application developer, the minimum
problem size and the minimum number of processors for
the application are specified by the developer. A small set
of non-dedicated resources in a cluster is then chosen for
training an initial list of performance model functions for
the application. At the end of the modeling phase, a filtered
list of combinations of performance model functions with
small standard error values is formed. The list is sorted in
the ascending order of standard error values. The functions
in the list can predict execution times of the application for
a given set of problem and resource characteristics on the

New MultiPhase
 Application

Performance Modeling

Sampling
Phase

Computation
Modeling Phase

Communication
Modeling Phase

Scalability
Modeling Phase

Final Regression
Model List

Phase
Detection Process

Meta Scheduler

New
SIngle Phase

Application

Search
Procedure

Application
Launcher

Application

Application
Monitor

Runtime Support
System

Rescheduler SRS

Parameters
and Final
 Schedule

Stop in case of
Benifit

Phase Switching
of Multiphase
ApplicationFinal Schedule

For Next Phase
of Multiphase
Applicaton

Stop

Restart

Application
and Resource
Parameters

Final
Schedule

User Submits
Job

Training and
Prediction Phase

Figure 1. Metascheduler Framework

cluster where the model functions were trained. We refer
to this cluster as a trained cluster. The results of the train-
ing phase, namely, the ordered list of performance model
functions and the training data, are then ported from one of
the trained clusters to the untrained clusters by scaling the
coefficients of the functions.

When a user submits a problem to the metascheduler cor-
responding to the application with a given problem size, the
search procedure evaluates different sets of resources from
different clusters. For a given candidate set of resources in a
cluster with a given set of resource characteristics, the grid
scheduler uses the top performance model function in the or-
dered list, for the cluster to predict the execution time of the
problem. The grid scheduler then chooses an optimal set of
resources in one of the clusters for application execution.

In the case of multiphase applications, a phase detec-
tion process identifies the different phases of the applica-
tion. The same modeling procedure is followed to derive
performance models for different phases. When a user sub-
mits a multiphase application to the metascheduler, the ap-
plication is scheduled on a set of resources corresponding
to the first phase. An application monitor tracks the phase
changes in the application. When the application changes to
a new phase, the monitor invokes the search procedure to de-
termine the best schedule for the next phase. A rescheduler
component calculates the performance gain due to migrat-
ing the application to the new schedule. If there is a per-

formance gain, the rescheduler will migrate the application
to the new schedule. Application migration is enabled by
instrumenting the application with a checkpointing library,
called SRS [16]. The rescheduler coordinates with a runtime
support system that interfaces with the application for mi-
gration.

4. Performance Modeling
In our modeling method, we calculate the time taken for the
execution of parallel application as:

T (N, P, minAvgAvailCPU, minAvgAvailBW) =

fcomp(N)

fcpu(minAvgAvailCPU) · fPcomp(P)
+

fcomm(N)

fbw(minAvgAvailBW) · fPcomm(P)

(1)

where N is the problem size; P is the number of processors;
minAvgAvailCPU and minAvgAvailBW represent the tran-
sient CPU and network characteristics, respectively; fcomp

and fcomm indicate the computational and communication
complexity, respectively, of the application in terms of prob-
lem size; fcpu is the function to indicate the effect of proces-
sor loads on computations; fPcomp is used along with com-
putational complexity to indicate the computational speedup
or the amount of parallelism in computations ; fbw is the
function to indicate the effect of network loads on com-
munications. fPcomm is used along with communication
complexity to indicate the communication speedup or the
amount of parallelism in communications.

Our performance modeling strategies based on regres-
sion, predict execution times of applications in non-dedicated
systems where the external CPU and network loads on the
systems can change during application execution. The differ-
ent functions of Equation 1 are derived using various steps
illustrated in Figure 1. Our strategy is adaptive to grid load
dynamics since it can use different functions at different
times based on load changes. We have also developed cross-
platform performance modeling techniques whereby the per-
formance modeling results of an application on one cluster
can be used for predicting execution times of the application
on another cluster.

5. Scheduler
Our scheduler framework consists of a search procedure that
is used with an application-specific performance model. The
application specific performance model, shown in Equation
1, is used as the objective function for the search procedure.
We have implemented different existing optimization tech-
niques, namely, ant colony optimization (ACO), genetic al-
gorithm (GA), simulated annealing (SA), branch and bound
(BB) technique, and dynamic programming (DP) for our
search procedure. Our search procedure is tightly coupled
with application specific performance model since it uses

the model for both evaluation of schedules and guiding the
search paths. This is illustrated in the pseudo code shown in
algorithm 1.

Algorithm 1 Pseudocode for Performance Modeling Based
Genetic Algorithm

1: Set alarm to make algorithm time tunable
2: Randomly generate initial population
3: Evaluate the fitness of each individual in the population

using Equation 1.
4: while terminating condition do
5: Breed new generation through crossover
6: Randomly choose a machine X in a individual to

mutate
7: for Each machine Y, which is not a part of individual

do
8: Using Equation 1 calculate the rank of the machine

Y, if it replaces machine X in the individual
9: end for

10: Pick the top ranked machine to replace the machine
X

11: Evaluate the individual fitness of the offspring using
Equation 1.

12: Select the best ranking individuals using elitism
13: end while

6. Performance Modeling Large Scientific
Applications

For predicting the execution times of large applications with
multiple phases of computation and communication com-
plexities, we plan to investigate the appropriateness of var-
ious available techniques for phase detection and predic-
tion [5]. These techniques use various application param-
eters including working sets, conditional branches and ba-
sic blocks to identify phases in the application. The primary
challenge will be to study the usefulness of the techniques
for various kinds of non-dedicatedness of the systems. An-
other challenge is to determine the appropriate thresholds in
variation of performance metrics that can be used to define
phase boundaries. For each of the detected phases, we can
then use the CPU and network load measurements and exe-
cution times within the phase boundaries to derive per-phase
execution models.

7. Rescheduler
The predictions by the per-phase execution time models can
be used by rescheduling strategies to dynamically migrate
the application to different sets of resources suitable for a
phase as the application enters the phase. The application is
dynamically instrumented with checkpointing calls [16] at
the phase boundaries. When the application enters the phase,
the appropriate data at the phase boundary is checkpointed.

500
1000

1500
2000

2500
3000

2

4

6

8
0

20

40

60

80

100

Problem SIze

Molecular Dynamics Simulation − Percentage Prediction Errors
for Different Problem Sizes and Processors

Number of Processors

P
er

ce
nt

ag
e

P
re

di
ct

io
n

E
rr

or

Figure 2. Percentage Prediction Errors

The rescheduler invokes the search procedure with the per-
formance model for the new phase, stops the executing ap-
plication and continues on the new schedule of resources.

8. Experimental Results
We have evaluated our strategies on 4 different clusters (8,
16, 24, 32 processors) for 7 different applications. We tested
our strategies with both random CPU and network loads and
also with load traces obtained from machines in the GrADS
testbed [6]. We verified our performance models both in
terms of average percentage performance prediction errors
and also in terms of its usefulness to a metascheduler to ar-
rive at the correct scheduling decisions. We obtained less
than 30% average percentage prediction errors in all cases
which to our knowledge, is the highest reported for predict-
ing application execution times for any number of proces-
sors on non-dedicated systems. Figure 2 plots the percent-
age prediction errors for different problem sizes and number
of processors for the Molecular Dynamics Simulation. We
find that average percentage prediction error is 18.86%. Our
cross-platform performance modeling also resulted in less
than 30% average percentage prediction errors.

We have evaluated our scheduling strategies by simulat-
ing multi-cluster setups. We find that strategies which tightly
coupled with application specific performance model gives
better schedules than strategies which use performance mod-
els only for evaluating schedules. Figure 3 plots the execu-
tion time of the best schedule determined by the scheduling
strategies on a 256 machine simulation setup.The text box
above each bar indicates the number of machines chosen for
that best solution.

9. Conclusions
In this work, we had proposed performance modeling based
metascheduler framework for computational grids. Our per-

ACO B & B DP GA SA
0

50

100

150

200

250

300

350

400

450

500

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

Comparison chart for different Optimization Techniques

240

255

77

240
64

Figure 3. Comparison chart

formance modeling strategies are adaptive to grid dynam-
ics since we deal with load changes during application ex-
ecution and also use different model functions at different
times, for predicting execution times. We have also devel-
oped cross-platform modeling techniques for porting the re-
sults of performance modeling on one platform or cluster to
other clusters in the grid. Our performance modeling strate-
gies gave less than 30% average percentage prediction er-
rors in all cases, which is reasonable for non-dedicated sys-
tems. Our scheduling strategies which are tightly coupled
with application specific performance model gives efficient
schedules for executing parallel applications. We have also
described our plans for performance modeling multi-phase
applications and rescheduler framework.

10. Future Work
We also plan to augment our techniques for predicting exe-
cution times for complex multi-component applications. We
also plan to extend our modeling techniques to model the I/O
costs in the applications.

References
[1] V. Adve and M. Vernon. Parallel Program Performance

Prediction using Deterministic Task Graph Analysis. ACM
Transactions on Computer Systems, 22(1):94–136, 2004.

[2] C. Anglano. Predicting Parallel Applications Performance on
Non-Dedicated Cluster Platforms. In ICS ’98: Proceedings of
the 12th international conference on Supercomputing, pages
172–179, 1998.

[3] R. Badia, J. Labarta, J. Gimenez, and F. Escale. DIMEMAS:
Predicting MPI Applications Behavior in Grid Enviorna-
ments. In In Workshop on Grid Applications and Program-
ming Tools (GGF8), Seattle York , U.S.A, June 2003.

[4] Liang Chen, Qian Zhu, and Gagan Agrawal. Supporting
Dynamic Migration in Tightly Coupled Grid Applications. In

SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, 2006.

[5] A. Dhodapkar and J. Smith. Comparing Program Phase
Detection Techniques. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 217–227, December 2003.

[6] GrADS Traces. http://pompone.cs.ucsb.edu/~rich/

data.

[7] Casanova. H., Obertelli. G., Berman. F., and Wolski. R. The
Apples Parameter Sweep Template: User-level middleware
for the Grid. In Proceedings of the Supercomputing,
November 2000.

[8] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, Xinuo
Chen, and R. Nudd. Hybrid Performance-oriented Scheduling
of Moldable Jobs with QoS Demands in Multiclusters and
Grids. In In IEE Proceedings Software, October 2004.

[9] Gregory Koenig and Laxmikant Kale. Optimizing Distributed
Application Performance Using Dynamic Grid Topology-
Aware Load Balancing. In IPDPS ’07: Proceedings of the
2007 IEEE International Parallel and Distributed Processing
Symposium, 2007.

[10] B. Lee, D. Brooks, B. de Supinski, M. Schulz, K. Singh, and
S. McKee. Methods of Inference and Learning for Perfor-
mance Modeling of Parallel Applications. In Proceedings
of Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP’07), San Jose , California, U.S.A, March
2007.

[11] G. Nudd, D. Kerbysin, E. Papaefstathiou, S. Perry, J. Harper,
and D. Wilcox. PACE - A Toolset for the Performance
Prediction of Parallel and Distributed Systems. The Interna-
tional Journal of High Performance Computing Applications,
14(3):228–251, 2000.

[12] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder,
and C. Dulong. Detecting Phases in Parallel Applications on
Shared Memory Architectures. In 20th International Parallel
and Distributed Processing Symposium, 2006.

[13] H.A. Sanjay and Sathish Vadhiyar. Performance Modeling
of Parallel Applications for Grid Scheduling. Submitted
after first revision to Journal of Parallel and Distributed
Computing - Elsevier, sep 2007.

[14] J. Schopf and F. Berman. Performance Prediction in Pro-
duction Environments. In Proceedings of 12th International
Parallel Processing Symposium, Orlando , USA, March 1998.

[15] V. Taylor, X. Wu, and Rick Stevens. Prophesy: An
Infrastructure for Performance Analysis and Modeling
of Parallel and Grid Applications. ACM SIGMETRICS
Performance Evaluation Review, 30(4):13–18, March 2003.

[16] S. Vadhiyar and J. Dongarra. SRS - A Framework for
Developing Malleable and Migratable Parallel Applications
for Distributed Systems. Parallel Processing Letters,
13(2):291–312, june 2003.

[17] J. Yagnik, H. A. Sanjay, and S. Vadhiyar. Performance
Modeling based on Multidimensional Surface Learning for
Performance Predictions of Parallel Applications in Non-
Dedicated Environments. In ICPP ’06: Proceedings of the

2006 International Conference on Parallel Processing, pages
513–522, 2006.

[18] A. YarKhan and J. Dongarra. Experiments with Scheduling
using Simulated Annealing in a Grid Environment. Lecture
notes in computer science - Grid 2002, November 2002.

