
Limits of Data-Level Parallelism
Sreepathi Pai, R. Govindarajan, M. J. Thazhuthaveetil

Supercomputer Education and Research Centre,
Indian Institute of Science, Bangalore, India.

Email: {sree@hpc.serc,govind@serc,mjt@serc}.iisc.ernet.in

Abstract—A new breed of processors like the Cell Broadband
Engine, the Imagine stream processor and the various GPU
processors emphasize data-level parallelism (DLP) and thread-
level parallelism (TLP) as opposed to traditional instruction-
level parallelism (ILP). This allows them to achieve order-of-
magnitude improvements over conventional superscalar proces-
sors for many workloads. However, it is unclear as to how much
parallelism of these types exists in current programs. Most earlier
studies have largely concentrated on the amount of ILP in a
program, without differentiating DLP or TLP.

In this study, we investigate the extent of data-level parallelism
available in programs in the MediaBench suite. By packing
instructions in a SIMD fashion, we observe reductions of up to
91% (84% on average) in the number of dynamic instructions,
indicating a very high degree of DLP in several applications.

I. INTRODUCTION

Modern superscalar processors exploit instruction-level par-
allelism (ILP) in a program to achieve performance. This ILP
is a combination of one or more of SISD, SIMD, MISD
and MIMD [1] parallelism. As ILP is usually implicit and
discovered at runtime, exploiting it has always been complex
and challenging, and it has become increasingly difficult to do
so in a complexity-effective manner.

Many recent production and research processors have there-
fore taken the explicit parallelism route, and require the pro-
grammer (or compiler) to indicate regions of SIMD or MIMD
parallelism. These data-level parallel processors like the Cell
Broadband Engine [2], the Imagine Stream Processor [3] and
the various GPU processors, have been able to achieve order
of magnitude performance improvements over conventional
processors at significantly lower hardware complexity for
many important workloads.

Distinguishing the contribution of data-level parallelism
(DLP) and thread-level parallelism (TLP) to the overall par-
allelism in a program is therefore necessary. In this study,
we examine a number of programs from the MediaBench
suite to determine the degree of data-level parallelism present.
By packing the instructions in these programs in a SIMD
fashion, we find an average of 84% and upto a maximum
of 91% reduction in the number of dynamic instructions in
these programs, indicating a DLP of 4 or more.

II. RELATED WORK

Earlier limits studies, like [4] and [5], have investigated
the degree of ILP in programs. However, they have not
differentiated their results into DLP, TLP or the like. Our study
uses similar algorithms and techniques to uncover parallelism

but reports the degree of SIMD parallelism (a form of DLP)
in a program. This differentiation is important because SIMD
DLP is often far easier to exploit than non-SIMD ILP.

Scott and Davidson attempted to explore the limits of SIMD
parallelism and evaluated Spec95 integer and MediaBench
benchmarks [6]. Their results for the MediaBench programs
were uncharacteristically pessimistic. Our study explores only
the MediaBench suite, but differs from [6] in the following
respects:

1) We demonstrate that the earlier approach unnecessar-
ily constrained the DLP by considering instructions in
program order. By relaxing this, and by considering
a topological sort of the instructions in the dynamic
data dependence graph, we eliminate packing limitations
and show significant reduction in the number of packed
instructions.

2) We establish an upper limit on the parallelism that
any algorithm seeking to pack instructions in a SIMD
fashion can achieve.

3) We recognize pseudo-dependences that are an artefact of
compilation (e.g., iterator dependences [5]), and which
tend to artificially limit available parallelism.

III. EXPERIMENTAL METHODOLOGY

Our packing algorithm operates on the dynamic trace of a
program. We annotate this trace with true data dependence
information obtained by doing perfect register and memory
disambiguation. Control dependences are ignored since we do
perfect branch prediction.

A. Packing Algorithm

Our packing algorithm (Algorithm 1) is a variant of the
algorithms used in other limit studies [4], modified to handle
SIMD semantics. It transforms an input trace of dynamic
instructions into a sequence of instruction-containing packs
that satisfy the following constraints:

• A pack only contains instructions that have the same
opcode.

• All instructions in a pack are independent of each other.
• Instructions in pack i may depend only on instructions in

pack 1 to pack i− 1.
• Instructions that modify control flow do not pack with

any instruction.
We do not constrain the width of a pack, nor the widths of
operands that a pack contains, as our intention is to discover
the limits of DLP.

Algorithm 1 The Packing Algorithm
for all instructions Insn in Unpacked do

LastSource← Source of Insn in PackingWindow
which occurs last (if any)

if LastSource exists then
SearchRange← [NEXTPACK(LastSource),

LASTPACK(PackingWindow)]
else

SearchRange← [FIRSTPACK(PackingWindow),
LASTPACK(PackingWindow)]

end if

CompatPack ← PACKWITHSAMEOP(SearchRange,
Insn)

if CompatPack found then
Add Insn to CompatPack

else
NewPack ← {Insn}
if LastSource exists then

Insert NewPack after LastSource
else

Insert NewPack at bottom of PackingWindow
end if

end if
end for

Although the proposed algorithm can operate on the entire
program trace in toto, detecting dependences across the entire
program significantly slows it down. Therefore we operate the
algorithm in a sliding window fashion. A PackingWindow is
used to accumulate packs as they are created. When a newly
inserted pack causes the length of the PackingWindow to
exceed a certain limit, we slide off the pack at the top of the
PackingWindow.

To increase opportunity for packing, we also perform the
following transformations on the input trace:

1) Topological Sort: The instructions are fetched into a
reorder window where they are topologically sorted based on
their dependence graph. The size of the reorder window is the
same as the size of the PackingWindow. All instructions in
this window are then packed before the window is refilled and
the procedure repeated.

Since, for an instruction, the range searched for compatible
packs is from the source to the end of the PackingWindow
(Algorithm 1), this transformation increases the number of
packs that are searched.

2) Iterator Dependences: As pointed out in [5], itera-
tor dependences are pseudo-dependences that can severely
limit available parallelism. These are operations like i++
that introduce inter-iteration dependences, but are actually
loop maintenance instructions and of no importance to the
actual algorithm. We handle them in two ways. Firstly, we
use aggressive loop unrolling at the compiler level, which
eliminates many of these instructions from the dynamic trace.
Secondly, we identify and modify the dependence graph for

those instructions that still remain in the dynamic trace.
Identification is done in two steps. In the first step, we mark

all those instructions that are self-dependent (i.e., depend on
a dynamic instruction having the same PC as themselves).
Further, since loop unrolling may create multiple static copies
of the same instruction (i.e., different PC), we also mark
instructions whose source instructions have exactly the same
form as themselves. The second step checks if one of the
source operands of a marked instruction is an immediate
operand. If it is, then the instruction is an iterator dependence
and the dependence is relaxed. Otherwise we assume it is a
reduction, e.g., sum = sum + a[i], and the dependence
is honoured.

Once an iterator dependence has been identified, it is
packed with its source instruction, if the source exists in the
PackingWindow.

B. Benchmark Programs

For this study, we use the programs shown in Table I from
the MediaBench suite of benchmarks. These benchmarks were
compiled for the Alpha ISA using gcc 3.4.6 with the options
-O2 -funroll-loops -floop-optimize --param
max-unroll-times=128

We modified SimpleScalar 3.0’s [7] sim-safe to emit dy-
namic instruction traces. All programs were run to completion.

Benchmark Trace Lengths
JPEG jpegencode (18M), jpegdecode (6M)
MPEG2 mpeg2decode (185M), mpeg2encode (1.8B)
GSM gsmencode (339M), gsmdecode (101M)
EPIC epic (56M), unepic (11M)

TABLE I
MEDIABENCH PROGRAMS STUDIED AND THEIR TRACE LENGTHS IN

INSTRUCTIONS

C. Output Instruction Set

To explore data-level parallelism in a more complete man-
ner, we do not pre-determine the output SIMD instructions.
Instead, we enforce the following SIMD semantics:

• All instructions in the pack have the same opcode.
• All instructions in the pack are independent of each other.
• Control instructions do not form packs.

Thus, any instruction that exhibits SIMD behaviour will form
packs. This includes those instructions that have conventional
SIMD equivalents (e.g., arithmetic and logical instructions)
as well as those that may not. We do not attempt to identify
complicated SIMD operations like sum of differences, etc. that
many SIMD instruction sets also provide.

D. Performance Metric

We report the available DLP in a program by measuring the
reduction in the number of dynamic instruction in the packed
form. That is:

Reduction = 1− NumOutputPacks

NumInputInsns

 60

 65

 70

 75

 80

 85

 90

 95

epic
gsm

decode

gsm
encode

jpegdecode

jpegencode

m
peg2decode

m
peg2encode

unepic

average

P
er

ce
nt

ag
e

Reduction in number of Dynamic Instructions

256
4096
8192

16384

Fig. 1. Reduction in dynamic instructions for different window sizes

E. Establishing the Perfect Limit

To establish a lower bound on the SIMD packing attainable
by any algorithm, we observe that if all instructions in the
trace are independent:

NumOutputPacksperfect = NumControlInsns +
NumDistinctOpcodes

and

Reductionperfect = 1− NumOutputPacksperfect

NumInputInsns

Note that this is a lower bound as no algorithm can produce
fewer packs. However, for very large windows, using the
critical path length in place of the number of distinct opcodes
will possibly yield a more realistic number. For our small
windows, this metric is adequate.

Since our algorithm works on a per-window basis,
Reduction and Reductionperfect are calculated every x input
instructions, where x is the size of PackingWindow. This
means that, in some cases, values of Reduction may exceed
Reductionperfect because input instructions in the current
input window will join packs formed by instructions in the
previous input window and not form any new packs.

IV. RESULTS

As Figure 1 shows, we achieve a reduction in the number
of dynamic instructions by 84% on average and upto 90% for
jpegencode, gsmencode and mpeg2encode. This trans-
lates to an average DLP of 4 and up to nearly 5 instructions
per pack.

The effects of topological sorting and pseudo-dependence
handling vary by program. As shown in Figure 2, programs
like epic, unepic and mpeg2decode get pronounced
increases in dynamic instruction reduction due to topological

 65

 70

 75

 80

 85

 90

 95

epic
gsm

decode

gsm
encode

jpegdecode

jpegencode

m
peg2decode

m
peg2encode

unepic

average

P
er

ce
nt

ag
e

Effects of Topological Sort (TS) and Pseudo-dependence (PD) Handling

None
TS

TS+PD

Fig. 2. Effects of Topological Sort and Pseudo-dependence handling
(PackingWindow size is 16384)

sorting. However, only unepic seems to benefit significantly
from handling of pseudo-dependences. We observe higher
reductions in our approach than the 25% observed in [6]
for these same programs. We attribute this to the following
reasons:

1) We use a continuous sliding window as opposed to a
discrete window for packing.

2) We do not limit the size of a pack.
Since real machines impose various limitations on the form

of SIMD packs, we investigate the effect of the following
constraints on pack formation (and hence reduction achieved):

1) MEM-CONTIGUOUS: Load/store instructions in a pack
must address only contiguous regions of memory.

2) PACKSOME: Only a limited set of arithmetic and logical
instructions are allowed to form packs. Without this
constraint, any instruction exhibiting SIMD behaviour
would have been allowed to form packs.

3) WIDTH-x: Packs formed can contain a maximum of x
operations. We assume all operations to be of the same
size, a reasonable assumption given that a majority of
the Alpha instruction set operates on 64-bit operands.
We choose x to be 4 or 8.

4) WIDTH-x-PACKSOME: Pack formation must obey the
constraints of both PACKSOME and WIDTH-x.

Figure 3 shows the reductions achieved under these con-
straints for a PackingWindow of size 16384 and with
topological sort applied. Constraining the pack width leads to
average drops of 20% for a width of 4, and a 10% for a pack
width of 8. The effects of PACKSOME are also significant, for
about half of the benchmarks, it causes a drop in reduction that
is greater than WIDTH-4. On average, its drop is about 20%,
nearly the same as WIDTH-4. Enforcing memory contiguity
results in an average drop of 13%. The WIDTH-x-PACKSOME
constraint which enforces two of the constraints at the same
time results in an average drop of 27%, slightly less than the

 40

 50

 60

 70

 80

 90

 100

epic
gsm

decode

gsm
encode

jpegdecode

jpegencode

m
peg2decode

m
peg2encode

unepic

average

Reduction achieved under various constraints (TS, PackingWindow size 16384)

MEM-CONTIGUOUS
PACKSOME

WIDTH-4
WIDTH-8

WIDTH-8-PACKSOME
TS-16384

Fig. 3. Achieved reduction when several constraints are imposed on packing;
MEM-CONTIGUOUS=Packs containing memory operations only address
contiguous memory, PACKSOME=Only some instructions can form packs,
WIDTH-x=Maximum x operations per pack (TS, PackingWindow size is
16384)

 0

 10

 20

 30

 40

 50

 60

epic-4096

epic-16384

gsm
decode-4096

gsm
decode-16384

gsm
encode-4096

gsm
encode-16384

jpegdecode-4096

jpegdecode-16384

jpegencode-4096

jpegencode-16384

m
peg2decode-4096

m
peg2decode-16384

m
peg2encode-4096

m
peg2encode-16384

unepic-4096

unepic-16384

average-4096

average-16384

P
er

ce
nt

ag
e

Pack Width Histogram

2
3-8

9-16
17-32
33-64

65-

Fig. 4. Widths of generated packs

sum of the drops due to the individual constraints.

Figure 5 shows that, on average, 90% of instructions in the
dynamic trace participate in the formation of packs of width
2 or more. These packs form about 40% of the packed output
(Figure 4).

The values of Reductionperfect and Reduction for
unepic are plotted on a per-window basis in Figure 6 for
a window size of 16384. Variations in data-level parallelism
by program region are clearly visible. The two horizontal lines
running across the length of the graph denote the averages of
these two values respectively. We observe that the average
value of Reduction is within 10% of Reductionperfect.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

epic-4096

epic-16384

gsm
decode-4096

gsm
decode-16384

gsm
encode-4096

gsm
encode-16384

jpegdecode-4096

jpegdecode-16384

jpegencode-4096

jpegencode-16384

m
peg2decode-4096

m
peg2decode-16384

m
peg2encode-4096

m
peg2encode-16384

unepic-4096

unepic-16384

average-4096

average-16384

P
er

ce
nt

ag
e

Input Instructions per Packwidth

1
2

3-8
9-16

17-32
33-64

65-

Fig. 5. Input instructions per packwidth

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

R
ed

uc
tio

n

Dynamic Instructions

unepic (Size of PackingWindow: 16384)

Average (Reduction)
Average (Reductionperfect)

Reductionperfect
Reduction

Fig. 6. Achieved vs perfect reduction (TS+PD) on a per-window basis for
unepic when PackingWindow is of size 16384

V. CONCLUSION

Most modern superscalar processors have gained SIMD
execution capabilities in the last decade, and these have
been used to great effect to accelerate multimedia and other
data-parallel workloads. Indeed, recent processors like the
Cell Processor [2] are designed primarily to support SIMD
execution.

In our study, we determined the amount of data-level
parallelism in benchmarks from the MediaBench suite. We de-
veloped algorithms that are sensitive to the packing limitations
imposed by SIMD semantics, in contrast to earlier studies.

Our results show that, on average, over 90% of dynamic
instructions participate in the formation of packs of width 2 or
more. These packs consist 40% of the packed output. Indeed,
about 85% of dynamic instructions get packed into packs of
width 3 or more, forming 20% of the packed output. Dynamic
instruction trace lengths reduce by 84% on average, and up to

91% for some programs indicating a DLP of 4 or higher.

REFERENCES

[1] M. J. Flynn, “Very high-speed computing systems,” Proceedings of the
IEEE, vol. 54, no. 0018-9219, pp. 1901–1909, 1966.

[2] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy, “Introduction to the Cell multiprocessor,” IBM Journal of
Research and Development, vol. 49, no. 4/5, pp. 589–604, 2005.

[3] U. J. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B. Khailany,
“The Imagine stream processor,” International Conference on Computer
Design, 2002.

[4] D. W. Wall, “Limits of instruction-level parallelism,” Digital Western
Research Laboratory, Tech. Rep. 93/6, Nov. 1993.

[5] M. S. Lam and R. P. Wilson, “Limits of control flow on parallelism,” in
ISCA ’92: Proceedings of the 19th annual international symposium on
Computer architecture, 1992.

[6] K. Scott and J. Davidson, “Exploring the limits of sub-word level paral-
lelism,” in PACT ’00: Proceedings of the 2000 International Conference
on Parallel Architectures and Compilation Techniques, 2000.

[7] D. C. Burger and T. M. Austin, “The SimpleScalar tool set, version 2.0,”
Computer Sciences Department, University of Wisconsin–Madison, Tech.
Rep. 1342, May 1997.

