
Designing Cellular Automata Structures using
Quantum-dot Cellular Automata

Mayur Bubna, Subhra Mazumdar, Sudip Roy and Rajib Mall

Department of Computer Sc. & Engineering
Indian Institute of Technology, Kharagpur-721 302, India

{ mayur, subra , sudip, rajib }@ cse.iitkgp.ernet.in

Abstract- Quantum-dot Cellular Automata (QCA) is a
promising, emerging nanotechnology based on single electron
effects in quantum dots and molecules. While many logic
implementations based on QCA devices have been proposed in
literature [6, 7, 8], the inherent cellular structure of QCA cells
make it a natural candidate for Cellular Automata (CA)
implementation. CA offers regularity and modularity to the
design which helps to mitigate the susceptibility of QCA cells to
manufacturing defects. Also, pipelining is an inherent property
of QCA computation which is essential for CA operation. This
work is first reported work to the best of our knowledge,
towards realization of CA structures using QCA logic cells. We
give detailed schematic of some typical CA rules implemented
using QCA. Also, QCA implementation of a Programmable
Cellular Automata (PCA) has been developed. A pseudo-
random sequence generator is developed using the proposed
PCA.

Keywords: Quantum-dot Cellular Automata, logic design,
cellular automata.

I. INTRODUCTION

Nanotechnology is an emerging area of interest which
offers alternative design technologies like carbon nanotubes,
quantum dot structures, molecular devices and microfluidic
biochips. Quantum-Dot Cellular Automata (QCA) [4,10] is
an emerging paradigm which allows operating frequencies
in range of THz and device integration densities about 900
times more than the current end of CMOS scaling limits,
which is not possible in current CMOS technologies. It has
been predicted as one of the future nanotechnologies in
Semiconductor Industries Association’s International
Roadmap for Semiconductors (ITRS) [3]. QCA encodes
information in the configuration of electrons within the
QCA cell, and relies on charge interactions to enable the
transmission and processing of information. Logical
operations and data movement are accomplished via
Coulombic interaction between neighbouring QCA cells
rather than electric current flow. QCA circuits could be
clocked at extremely high frequencies (1-10 THz),
potentially leading to circuits with densities that are one or
two orders of magnitude beyond what end-of-the-curve
CMOS can provide [1], and dissipate very little power [2].

Many logic devices based on QCA gates have been

proposed in literature [6,7,8]. All of them try to map the
QCA cells to realize CMOS based structures like AND, OR
etc. For example Niemer [7] have proposed a 4 bit-slice
ALU designed using QCA cells. But QCA cells are clocked
elements and offer inherent pipelining. Cellular
architectures are more suitable to QCA because of inherent

pipeline structure which CA structures offer. Also, regular
layout of CA structures offers higher integration densities
with lower power consumption. Further, various kinds of
manufacturing defects occur in QCA manufacturing
technology processes. The basic defects include
displacement errors, rotated cells, missing cells, fixed cells
(due to stray charge), bad clocking wires, and bad circuit
input/output [5,9]. Cellular Automata offers modular layout
which enhances manufacturability.

We give a model of one dimensional, null-boundary,
linear CA using Rule 60 and give schematics and QCA
layout implementations. Also, we give a model of
Programmable Cellular Automata (PCA) which can be
modified to accommodate a variety of complementary,
additive, null-boundary CA rules by passing appropriate
control inputs. The proposed PCA has been modified to
show a four cell with rule 90/150/165/105 implemented
using QCA based gates and latches. Detailed schematic and
layout have been provided for all the implementations. This
work is the first approach to the best of our knowledge
which utilizes the cellular structure of QCA cells to devise
Cellular Automata structures realizing various state
transition rules. The proposed model can be easily modified
to implement other one dimensional as well as two
dimensional Cellular Automata structures.

II. QUANTUM-DOT CELLULAR AUTOMATA

We briefly describe the various QCA gates and
computation mechanism using QCA cells.

A. Basic QCA cell:
QCA and the QCA cell was first introduced by Prof. C. S.
Lent at the University of Notre Dame [3]. QCA information
processing is based on the Coulombic interactions between
many identical QCA cells.

Fig.1. (a) Polarizations of QCA cell and (b) Two types of
QCA wires.

Each QCA cell is constructed using four electronic sites
or dots coupled through quantum mechanical tunneling
barriers. The electronic sites represent locations that a
mobile electron can occupy. The cells contain two mobile
electrons which repel each other as a result of their mutual
Coulombic repulsion, and, in the ground state, tend to
occupy the diagonal sites of the cell. These lead to two
polarizations of a QCA cell, denoted as +1 and -1
respectively. Binary information can be encoded in the
polarization of electrons in each QCA cell. Thus, logic 0 and
logic 1 are encoded in polarization -1 and +1 respectively.
Fig. 1(a) shows the two possible polarizations of a QCA cell.
QCA wires can be either made up of 900 cells or 450 cells.
450 cells are used for coplanar wire crossings (Fig. 1(b)).

B. QCA Computation:
Unlike standard technologies, where metallic

interconnects are used to connect transistors together, QCA
cells act as both the switching device as well as
interconnects. This difference has a significant impact on
optimizing QCA computing architectures and the latency of
the circuits. QCA computation proceeds by the orientation
of cells based on the polarization of the neighbouring cells.
The basic gates for computation in QCA are the majority
gate ‘M’ and the inverter. The majority gate computes the
function M=AB+BC+CA and outputs the majority value of
its three inputs. By fixing the input polarization of one input
cell to -1 or +1, i.e. logic value 0 and 1 respectively, AND
and OR gates can be computed. Fig.2 (a) and 2(b) shows a
Majority and an inverter gate.

C. QCA clocking:
The clock in QCA is multi-phased. Individual QCA cells

are not timed separately. A group of QCA cells can be
divided into sub-groups that offer the advantage of multi-
phase clocking and pipelining. For each sub-group of QCA
cells, a single potential modulates the inter-dot barriers in all
of the cells. This clocking scheme allows one sub-group of
cells to perform a certain calculation, have its state frozen
by the raising of its interdot barriers, and have the output of
that sub-group of cells act as the input to a successor sub-
group (i.e. clocking sub-group 1 can act as input to clocking
sub-group 2). During the calculation phase, the successor
group is kept in an unpolarized state so it does not influence

the computation. Each of the four clocking sub-groups
corresponds to one of four different clocking phases.
Neighboring sub-groups of QCA cells concurrently receive
neighboring clocking phases.

Fig. 3 shows the four clocking phases and the assosciated
polarization of electrons in these phases. During the first
clock phase, the switch phase, QCA cells begin unpolarized
and their interdot potential barriers are low. The barriers are
then raised during this phase and the QCA cells become
polarized according to the state of their driver (i.e. their
input cell). It is in this clock phase that the actual
computation (or switching) occurs. By the end of this clock
phase, barriers are high enough to suppress any electron
tunneling and cell states are fixed. During the second clock
phase, the hold phase, barriers are held high so the outputs
of the subgroup can be used as inputs to the next stage. In
the third clock phase, the release phase, barriers are lowered
and cells are allowed to relax to an unpolarized state. Finally,
during the fourth clock phase, the relax phase, cell barriers
remain lowered and cells remain in an unpolarized state [4].

III. CELLULAR AUTOMATA

Cellular Automata was proposed by J. von Neumann [11] as
a cellular space with self-producing configurations
involving 5-neighbourhood cells, each having 29 states.
Various applications of Cellular Automata have been
proposed in literature, for example modeling growth
processes, image processing, computer architectures,
language recognizers, error correcting codes etc. Many
applications of CA based on local neighbourhood have been
utilized for various VLSI applications like synthesis of
testable finite-state machines, pseudoassosciative memory,
Built-in Self Test (BIST) etc.[12]

A. CA state transition rules:
The following notations have been used to characterize

CA transition rules:
i : The position of a cell in the one-dimensional array;
t : the time step;
Qi(t) : the output of the ith cell at the tth time step; and
Qi(t+1) : the output state of ith cell at the (t+1)th time

step;
The next-state function (transition) for a three-neighborhood
CA cell can be expressed as follows:

Qi(t+1) = f [Qi(t), Qi+!(t), Qi-1(t))]
where, f denotes the local transition function realized with
a combinational logic, and is known as the “rule” of the CA.

Fig.3. The four clocking phases and the assosciated
QCA cell polarizations.

 Fig.2. (a) a Majority gate (b) an inverter

If the next-state function of a two-state, three
neighbourhood cell is expressed in the form of a truth table,
then the decimal equivalent of the output is called the rule
number for the cell [12].

In Table 1, Ns denote the neighbourhood state of a cell.
The top row gives all possible eight states of the three
neighbouring cells (the left neighbour of the ith cell, the ith
cell itself, and its right neighbour) at the time instant t. The
second and third rows give the corresponding states of the
ith cell at the time instant t+1 for the two illustrative CA
rules. The corresponding combinational logic for the above
rules can be specified as:

 Rule 60: Qi(t+1) = Qi-1(t) ⊕ Qi(t)
 Rule 90: Qi(t+1) = Qi-1(t) ⊕ Qi+!(t) etc.

where ⊕ denotes XOR (that is, addition modulo-2). For
example in Fig. 4, a single CA cell is depicted whose output
depends on the state values from it’s left and right neighbors,
and depending on the switch open or closed computes the
rule 90 or 150.

B. Group CA characterization:
A group of CA cells form a Group CA. The n-bit global

state of a CA at time t can be denoted as vector S(t). The
states of a CA during each discrete time step is successively
sampled to form a stream < S(0), S(1), S(2), …….>. This
approach qualifies the CA as an iterative PRNG. Here we
consider only linear/additive CA rules, more specifically
only rules 90, 150, 165 and 105 shown in Table 1. We can
then define a state transition matrix for a CA, denoted as T.
It is an n-by-n square matrix, with each row representing the
state transition neighborhood dependencies for each cell, an
entry of “1” means dependency and “0” otherwise. The next
global state vector is then calculated uniquely by

S(t+1) = T. S(t)

For example, if the initial state of a 4 cell CA is
S(0) = [1 1 0 0]T, then the next state will be
S(1) = T. S(0) = [1 1 1 0]T, with the state transition matrix T

defined as:

All arithmetic is performed over GF(2). Here we only

consider CA with null boundary conditions where the

leftmost/rightmost CA cells receive a fixed “0” input from
the leftmost and rightmost “supposed” neighbour
respectively.

C. Programmable Cellular Automata (PCA):
Programmable Cellular Automata (PCA) allows spatial

and temporal variation in the state transition rules within a
CA, according to some external control scheme. This
equates to dynamically changing the state transition matrix
T. Through an appropriate selection of state transition rules
and the control signal wirings, a number of rules can be
programmed into the operation of the PCA. Fig. 5 shows an
example PCA cell with various control input signals.
Depending on the values of control signals, the PCA cells
realize either 2-input or 3-input, complementary or non-
complementary CA rules.

The combination logic defining the state transition
behaviour is the 3-input XOR gate which receives inputs
from the state values of left neighbor, right neighbor and the
cell itself. The inputs are not directly fed into the XOR gate
but are multiplexed using switches as shown. This enables
the PCA cell to be initialized to any desired state by suitably
choosing the control input to the switches and the
initialization signals. The output is finally fed back to a D
Flip-Flop which stores the state of a cell for computation in
the next clock cycle.

Ns: 111 110 101 100 011 010 001 000
Next state: 0 0 1 1 1 1 0 0 (rule 60)
Next state: 0 1 0 1 1 0 1 0 (rule 90)
Next state: 1 0 0 1 0 1 1 0 (rule 150)
Next state: 1 0 1 0 0 1 0 1 (rule 165)
Nexr state: 0 1 1 0 1 0 0 1 (rule 105)

Fig. 4. A simple CA cell showing rule 90/150

Fig. 5. A PCA cell with various control signals

Table 1: Rule notation for a CA

IV. QCA IMPLEMENTATION OF CA

A. QCA implementation of Rule 60 and PCA:
The schematic of a single CA cell for Rule 60 is shown in

Fig. 6. Input1 and Input2 are used for initializing the CA
cell to a particular value. S1 and S2 are the select inputs to
the 2-to-1 MUX. S1 (or S2) selects whether the inputs to the
2-input XOR gate is the initialization value, Input1 (Input2)
or feedback value Qi-1(t) (Qi(t)). D0, D1 etc. are latches
which are made of QCA cells and is equivalent to wires in
CMOS logic. Thus, when S1=1, S2=1 circuit behaves in
initialization mode, and CA is initialized with input values.
When S1=0, S2=0, the circuit behaves in operation mode
with feedback and the states of the cells evolve according to
Rule 60. Since QCA operates in accordance with an external
clock, the storage element in a CA is realized by the
feedback latch in the circuit. The latency of the circuit is 2T,
where T is the one clock period consisting of four clock
phases. This CA cell can be replicated to generate the whole
CA structure. Since the CA is a null boundary CA, the
leftmost and rightmost group CA cell shall always have left
input and right input values permanently fixed to 0. The
layout of circuit generated using QCADesigner [8] is shown
in Fig. 7. The coloured regions indicate the QCA cells
divided into four clocking phases.

Next we implement a 4-cell PCA with rule set
90/150/165/105. Fig. 8 gives the schematic of a single PCA
cell which can be configured to various rules based on the
inputs to the MUX. In this case, the combinational logic is a
3-input XOR gate which based on the value of signal B,
implements complementary rule pairs 150/105 (B=0) and

90/165 (B=1). Select0 and Select1 are select inputs to a
MUX, which are used to initialize the XOR gate or set the
PCA cell for operation in feedback mode, as explained for
Rule 60 CA cell above. Input0 and Input1 are used to
initialize the CA cells. A input selects which of the
complementary rules is implemented for each CA rule pair.
For example, for Select0=0, Select1=0, and B=0, setting
A=0, selects rule 90, while setting A=1, CA implements the
rule 150. Table 2 shows the various possible PCA cell

configurations. Fig. 9 shows the full layouts for 4 cells of an
example PCA cell generated using QCADesigner tool [8].

B. QCA implementation of a Pseudo-random Number
Generator:

The evolution of states of PCA cell behave like a pseudo-
random number generator. When the states of the group of
CA cells, < S(0), S(1), S(2), …….>, during each time step is
sampled, it forms a pseudo-random number stream. It was
shown in [12] that an exhaustive LFSR (linear feedback
shift register) and an exhaustive CA are isomorphic to each
other. The assosciated characteristic polynomial can be
obtained by constructing the matrix [T]+x[I], where [I] is
the identity matrix and taking its determinant. For the PCA
rule 90/150/165/105, the assosciated characteristic
polynomial was found out to be x4-3x2+1. Thus, this PCA
behaves like an LFSR. The phase shift properties of this
pseudo-number sequence has been studied extensively in
[12]. By initializing the PCA with different seed values,
different types of pseudo-random sequences can be
generated.

V. CONCLUSION

In this paper, we have designed various types of linear and
additive CA rules using QCA cells. The design of a
Programmable CA (PCA) was shown using QCA cells and
detailed layout and schematics were generated using QCA
cells. PCA was configured to a pseudo-random number
generator and shown to be equivalent to an LFSR. Various
other kinds of applications of CA based on QCA can be
constructed. Future work includes designing control
structures using QCA like testable FSM design, BIST etc.
Also, reversible implementations of QCA structures [13]
should be implemented which reduces the switching power
dissipation not possible in irreversible implementations.

REFERENCES
[1] M.T. Niemier, “The Effects of a New Technology on the Design,

Organization, and Architectures of Computing Systems,” Ph.D.
Dissertation.

[2] J. Timler and C.S. Lent, “Power gain and dissipation in quantum-dot
cellular automata”, J. of App. Phys., 91, 2002, p.823-831.

[3] International Technology Roadmap for Semiconductors, International
Technology Roadmap for Semiconductors (ITRS) 2004,
http://public.itrs.net, 2004.

[4] Tougaw, P. and Lent, C., Logical devices implemented using
quantum cellular-automata. Journal of Applied Physics. v75. 1818-
1825.

[5] G. Schulhof, K. Walus, G. A. Jullien, “Simulation of random cell
displacements in QCA”, Journal of Emerging Technologies, Vol. 3,
No.1, Article no. 2, 2007.

Switch B Switch A Rule implemented
0 0 90
0 1 150
1 0 165
1 1 105

 Fig. 6. QCA Schematic of a PCA cell with rule 60

Table 2: Control switch configurations for PCA

[6] Walus, Konrad, Graham A. Jullien, “Design tools for an emerging
SoC technology : Quantum-dot cellular automata”, Proceedings of
IEEE, Vol. 94, Issue 6, pp. 1225-1244.

[7] Designing Digital Systems in Quantum Cellular Automata
M.T.Niemier, Master’s Thesis, University of Notre Dame (2004)

[8] K. Walus, T. Dysart, G.A. Jullien, R.A. Budiman, “QCADesigner: A
Rapid Design and Simulation Tool for Quantum-Dot Cellular
Automata”, IEEE Transactions on Nanotechnology, vol. 3, no. 1, pp.
26-31, March 2004.

[9] Timothy J. Dysart. "Defect Properties and Design Tools for Quantum
Dot Cellular Automata." Master's Thesis, 2005.

[10] G.L. Snider, A.O. Orlov, R.K. Kummamuru, R. Ramasubramaniam, I.
Amlani, G.H. Bernstein, C.S. Lent, J.L. Merz and P. Wolfgang,
“Quantum-dot cellular automata: introduction and experimental
overview”, Proceedings of the First IEEE Conference on
NANOTECHNOLOGY pp. 465-470 (2001)

[11] S. Wolfram, “Statistical Mechanics for Cellular Automata”, Rev. Mod.
Phys., Vol. 55, July 1983, pp. 601-644.

[12] Additive Cellular Automata, Theory and Applicatons-Volume 1. P. P.
Chaudhuri, D. R. Chowdhury, S. Nandi, S. Chattopadhyay. IEEE
Press.

[13] C. S. Lent, Sarah E. Frost, P. M. Kogge, Reversible computation with
QCA,Proc. Of 2nd Conf. on Computing Frontiers, pp.403, 2005.

 Fig. 8. Schematic of a PCA cell with rule 90/150/165/105

 Fig. 9. Detailed layout of Rule 90/150/165/105

Fig. 7. Detailed layout of Rule 60.

