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Abstract- Quantum-dot Cellular Automata (QCA) is a 
promising, emerging nanotechnology based on single electron 
effects in quantum dots and molecules. While many logic 
implementations based on QCA devices have been proposed in 
literature [6, 7, 8], the inherent cellular structure of QCA cells 
make it a natural candidate for Cellular Automata (CA) 
implementation. CA offers regularity and modularity to the 
design which helps to mitigate the susceptibility of QCA cells to 
manufacturing defects. Also, pipelining is an inherent property 
of QCA computation which is essential for CA operation. This 
work is first reported work to the best of our knowledge, 
towards realization of CA structures using QCA logic cells. We 
give detailed schematic of some typical CA rules implemented 
using QCA. Also, QCA implementation of a Programmable 
Cellular Automata (PCA) has been developed. A pseudo-
random sequence generator is developed using the proposed 
PCA. 

Keywords: Quantum-dot Cellular Automata, logic design, 
cellular automata. 

I. INTRODUCTION 

Nanotechnology is an emerging area of interest which 
offers alternative design technologies like carbon nanotubes, 
quantum dot structures, molecular devices and microfluidic 
biochips. Quantum-Dot Cellular Automata (QCA) [4,10] is 
an emerging paradigm which allows operating frequencies 
in range of THz and device integration densities about 900 
times more than the current end of CMOS scaling limits, 
which is not possible in current CMOS technologies. It has 
been predicted as one of the future nanotechnologies in 
Semiconductor Industries Association’s International 
Roadmap for Semiconductors (ITRS) [3]. QCA encodes 
information in the configuration of electrons within the 
QCA cell, and relies on charge interactions to enable the 
transmission and processing of information. Logical 
operations and data movement are accomplished via 
Coulombic interaction between neighbouring QCA cells 
rather than electric current flow. QCA circuits could be 
clocked at extremely high frequencies (1-10 THz), 
potentially leading to circuits with densities that are one or 
two orders of magnitude beyond what end-of-the-curve 
CMOS can provide [1], and dissipate very little power [2]. 

 
Many logic devices based on QCA gates have been 

proposed in literature [6,7,8]. All of them try to map the 
QCA cells to realize CMOS based structures like AND, OR 
etc. For example Niemer [7] have proposed a 4 bit-slice 
ALU designed using QCA cells. But QCA cells are clocked 
elements and offer inherent pipelining. Cellular 
architectures are more suitable to QCA because of inherent 

pipeline structure which CA structures offer. Also, regular 
layout of CA structures offers higher integration densities 
with lower power consumption. Further, various kinds of 
manufacturing defects occur in QCA manufacturing 
technology processes. The basic defects include 
displacement errors, rotated cells, missing cells, fixed cells 
(due to stray charge), bad clocking wires, and bad circuit 
input/output [5,9]. Cellular Automata offers modular layout 
which enhances manufacturability.  

We give a model of one dimensional, null-boundary, 
linear CA using Rule 60 and give schematics and QCA 
layout implementations. Also, we give a model of 
Programmable Cellular Automata (PCA) which can be 
modified to accommodate a variety of complementary, 
additive, null-boundary CA rules by passing appropriate 
control inputs. The proposed PCA has been modified to 
show a four cell with rule 90/150/165/105 implemented 
using QCA based gates and latches. Detailed schematic and 
layout have been provided for all the implementations. This 
work is the first approach to the best of our knowledge 
which utilizes the cellular structure of QCA cells to devise 
Cellular Automata structures realizing various state 
transition rules. The proposed model can be easily modified 
to implement other one dimensional as well as two 
dimensional Cellular Automata structures.  

 

II. QUANTUM-DOT CELLULAR AUTOMATA 

We briefly describe the various QCA gates and 
computation mechanism using QCA cells. 

A. Basic QCA cell: 
QCA and the QCA cell was first introduced by Prof. C. S. 
Lent at the University of Notre Dame [3]. QCA information 
processing is based on the Coulombic interactions between 
many identical QCA cells.  

 
 
 
 
 
 

 
 
 
 
 
 

Fig.1. (a) Polarizations of QCA cell and (b) Two types of 
QCA wires. 



Each QCA cell is constructed using four electronic sites 
or dots coupled through quantum mechanical tunneling 
barriers. The electronic sites represent locations that a 
mobile electron can occupy. The cells contain two mobile 
electrons which repel each other as a result of their mutual 
Coulombic repulsion, and, in the ground state, tend to 
occupy the diagonal sites of the cell. These lead to two 
polarizations of a QCA cell, denoted as +1 and -1 
respectively. Binary information can be encoded in the 
polarization of electrons in each QCA cell. Thus, logic 0 and 
logic 1 are encoded in polarization -1 and +1 respectively. 
Fig. 1(a) shows the two possible polarizations of a QCA cell. 
QCA wires can be either made up of 900 cells or 450 cells. 
450 cells are used for coplanar wire crossings (Fig. 1(b)). 

B. QCA Computation: 
Unlike standard technologies, where metallic 

interconnects are used to connect transistors together, QCA 
cells act as both the switching device as well as 
interconnects. This difference has a significant impact on 
optimizing QCA computing architectures and the latency of 
the circuits. QCA computation proceeds by the orientation 
of cells based on the polarization of the neighbouring cells. 
The basic gates for computation in QCA are the majority 
gate ‘M’ and the inverter. The majority gate computes the 
function M=AB+BC+CA and outputs the majority value of 
its three inputs. By fixing the input polarization of one input 
cell to -1 or +1, i.e. logic value 0 and 1 respectively, AND 
and OR gates can be computed. Fig.2 (a) and 2(b) shows a 
Majority and an inverter gate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. QCA clocking: 
The clock in QCA is multi-phased. Individual QCA cells 

are not timed separately. A group of QCA cells can be 
divided into sub-groups that offer the advantage of multi-
phase clocking and pipelining. For each sub-group of QCA 
cells, a single potential modulates the inter-dot barriers in all 
of the cells. This clocking scheme allows one sub-group of 
cells to perform a certain calculation, have its state frozen 
by the raising of its interdot barriers, and have the output of 
that sub-group of cells act as the input to a successor sub-
group (i.e. clocking sub-group 1 can act as input to clocking 
sub-group 2). During the calculation phase, the successor 
group is kept in an unpolarized state so it does not influence  

 
 
 
 
 
 
 
 
 
 
 

the computation. Each of the four clocking sub-groups 
corresponds to one of four different clocking phases. 
Neighboring sub-groups of QCA cells concurrently receive 
neighboring clocking phases.  

Fig. 3 shows the four clocking phases and the assosciated 
polarization of electrons in these phases. During the first 
clock phase, the switch phase, QCA cells begin unpolarized 
and their interdot potential barriers are low. The barriers are 
then raised during this phase and the QCA cells become 
polarized according to the state of their driver (i.e. their 
input cell). It is in this clock phase that the actual 
computation (or switching) occurs. By the end of this clock 
phase, barriers are high enough to suppress any electron 
tunneling and cell states are fixed. During the second clock 
phase, the hold phase, barriers are held high so the outputs 
of the subgroup can be used as inputs to the next stage. In 
the third clock phase, the release phase, barriers are lowered 
and cells are allowed to relax to an unpolarized state. Finally, 
during the fourth clock phase, the relax phase, cell barriers 
remain lowered and cells remain in an unpolarized state [4].  

 

III. CELLULAR AUTOMATA 

Cellular Automata was proposed by J. von Neumann [11] as 
a cellular space with self-producing configurations 
involving 5-neighbourhood cells, each having 29 states. 
Various applications of Cellular Automata have been 
proposed in literature, for example modeling growth 
processes, image processing, computer architectures, 
language recognizers, error correcting codes etc. Many 
applications of CA based on local neighbourhood have been 
utilized for various VLSI applications like synthesis of 
testable finite-state machines, pseudoassosciative memory, 
Built-in Self Test (BIST) etc.[12]  
 

A. CA state transition rules: 
The following notations have been used to characterize 

CA transition rules: 
i  : The position of a cell in the one-dimensional array; 
t  :  the time step; 
Qi(t) : the output of the ith cell at the tth time step; and 
Qi(t+1) : the output state of ith cell at the (t+1)th time 

step; 
The next-state function (transition) for a three-neighborhood 
CA cell can be expressed as follows: 

Qi(t+1) = f [Qi(t), Qi+!(t), Qi-1(t))] 
where,  f  denotes the local transition function realized with 
a combinational logic, and is known as the “rule” of the CA. 

 

  

Fig.3.  The four clocking phases and the assosciated 
QCA cell polarizations. 

    Fig.2. (a) a Majority gate  (b) an inverter



 
 
 

If the next-state function of a two-state, three 
neighbourhood cell is expressed in the form of a truth table, 
then the decimal equivalent of the output is called the rule 
number for the cell [12]. 

In Table 1, Ns denote the neighbourhood state of a cell. 
The top row gives all possible eight states of the three 
neighbouring cells (the left neighbour of the ith cell, the ith 
cell itself, and its right neighbour) at the time instant t. The 
second and third rows give the corresponding states of the 
ith cell at the time instant t+1 for the two illustrative CA 
rules. The corresponding combinational logic for the above 
rules can be specified as: 

  
                     Rule 60: Qi(t+1) = Qi-1(t) ⊕ Qi(t) 
                     Rule 90: Qi(t+1) = Qi-1(t) ⊕ Qi+!(t)     etc. 
 
where ⊕ denotes XOR (that is, addition modulo-2). For 
example in Fig. 4, a single CA cell is depicted whose output 
depends on the state values from it’s left and right neighbors, 
and depending on the switch open or closed computes the 
rule 90 or 150. 

B. Group CA characterization: 
A group of CA cells form a Group CA. The n-bit global 

state of a CA at time t can be denoted as vector S(t). The 
states of a CA during each discrete time step is successively 
sampled to form a stream < S(0), S(1), S(2),  …….>. This 
approach qualifies the CA as an iterative PRNG. Here we 
consider only linear/additive CA rules, more specifically 
only rules 90, 150, 165 and 105 shown in Table 1. We can 
then define a state transition matrix for a CA, denoted as T. 
It is an n-by-n square matrix, with each row representing the 
state transition neighborhood dependencies for each cell, an 
entry of “1” means dependency and “0” otherwise. The next 
global state vector is then calculated uniquely by 

 
S(t+1) = T. S(t) 

 
For example, if the initial state of a 4 cell CA is  
S(0)  = [ 1 1 0 0 ]T, then the next state will be 
S(1)  = T. S(0) = [1 1 1 0]T, with the state transition matrix T 

defined as: 
 
 
 

                      
 
 

 
All arithmetic is performed over GF(2). Here we only 

consider CA with null boundary conditions where the 

leftmost/rightmost CA cells receive a fixed “0” input from 
the leftmost and rightmost “supposed” neighbour 
respectively. 

C. Programmable Cellular Automata (PCA): 
Programmable Cellular Automata (PCA) allows spatial 

and temporal variation in the state transition rules within a 
CA, according to some external control scheme. This 
equates to dynamically changing the state transition matrix 
T. Through an appropriate selection of state transition rules 
and the control signal wirings, a number of rules can be 
programmed into the operation of the PCA. Fig. 5 shows an 
example PCA cell with various control input signals. 
Depending on the values of control signals, the PCA cells 
realize either 2-input or 3-input, complementary or non-
complementary CA rules.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
The combination logic defining the state transition 
behaviour is the 3-input XOR gate which receives inputs 
from the state values of left neighbor, right neighbor and the 
cell itself. The inputs are not directly fed into the XOR gate 
but are multiplexed using switches as shown. This enables 
the PCA cell to be initialized to any desired state by suitably 
choosing the control input to the switches and the 
initialization signals. The output is finally fed back to a D 
Flip-Flop which stores the state of a cell for computation in 
the next clock cycle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ns:               111  110  101  100  011  010  001  000 
Next state:     0     0      1       1      1     1      0      0  (rule 60) 
Next state:     0     1      0       1      1     0      1      0  (rule 90) 
Next state:     1     0      0       1      0     1      1      0  (rule 150) 
Next state:     1     0      1       0      0     1      0      1  (rule 165) 
Nexr state:     0     1      1       0      1      0     0      1  (rule 105) 

Fig. 4.  A simple CA cell showing rule 90/150 

Fig. 5.  A PCA cell with various control signals

Table 1: Rule notation for a CA

 



IV. QCA IMPLEMENTATION OF CA 

A. QCA implementation of Rule 60 and PCA: 
The schematic of a single CA cell for Rule 60 is shown in 

Fig. 6. Input1 and Input2 are used for initializing the CA 
cell to a particular value. S1 and S2 are the select inputs to 
the 2-to-1 MUX. S1 (or S2) selects whether the inputs to the 
2-input XOR gate is the initialization value, Input1 (Input2) 
or feedback value Qi-1(t) (Qi(t)). D0, D1 etc. are latches 
which are made of QCA cells and is equivalent to wires in 
CMOS logic. Thus, when S1=1, S2=1 circuit behaves in 
initialization mode, and CA is initialized with input values. 
When S1=0, S2=0, the circuit behaves in operation mode 
with feedback and the states of the cells evolve according to 
Rule 60. Since QCA operates in accordance with an external 
clock, the storage element in a CA is realized by the 
feedback latch in the circuit. The latency of the circuit is 2T, 
where T is the one clock period consisting of four clock 
phases. This CA cell can be replicated to generate the whole 
CA structure. Since the CA is a null boundary CA, the 
leftmost and rightmost group CA cell shall always have left 
input and right input values permanently fixed to 0. The 
layout of circuit generated using QCADesigner [8] is shown 
in Fig. 7. The coloured regions indicate the QCA cells 
divided into four clocking phases. 

Next we implement a 4-cell PCA with rule set 
90/150/165/105. Fig. 8 gives the schematic of a single PCA 
cell which can be configured to various rules based on the 
inputs to the MUX. In this case, the combinational logic is a 
3-input XOR gate which based on the value of signal B, 
implements complementary rule pairs 150/105 (B=0) and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
90/165 (B=1). Select0 and Select1 are select inputs to a 
MUX, which are used to initialize the XOR gate or set the 
PCA cell for operation in feedback mode, as explained for 
Rule 60 CA cell above. Input0 and Input1 are used to 
initialize the CA cells. A input selects which of the 
complementary rules is implemented for each CA rule pair. 
For example, for Select0=0, Select1=0, and B=0, setting 
A=0, selects rule 90, while setting A=1, CA implements the 
rule 150. Table 2 shows the various possible PCA cell 

configurations. Fig. 9 shows the full layouts for 4 cells of an 
example PCA cell generated using QCADesigner tool [8]. 

 
 
 
 
 
 
 

 
 

B. QCA implementation of a Pseudo-random Number 
Generator: 

The evolution of states of  PCA cell behave like a pseudo-
random number generator. When the states of the group of 
CA cells, < S(0), S(1), S(2),  …….>, during each time step is 
sampled, it forms a pseudo-random number stream. It was 
shown in [12] that an exhaustive LFSR (linear feedback 
shift register) and an exhaustive CA are isomorphic to each 
other. The assosciated characteristic polynomial can be 
obtained by constructing the matrix [T]+x[I], where [I] is 
the identity matrix and taking its determinant. For the PCA 
rule 90/150/165/105, the assosciated characteristic 
polynomial was found out to be x4-3x2+1. Thus, this PCA 
behaves like an LFSR. The phase shift properties of this 
pseudo-number sequence has been studied extensively in 
[12]. By initializing the PCA with different seed values, 
different types of pseudo-random sequences can be 
generated. 

 

V. CONCLUSION 

In this paper, we have designed various types of linear and 
additive CA rules using QCA cells. The design of a 
Programmable CA (PCA) was shown using QCA cells and 
detailed layout and schematics were generated using QCA 
cells. PCA was configured to a pseudo-random number 
generator and shown to be equivalent to an LFSR. Various 
other kinds of applications of CA based on QCA can be 
constructed. Future work includes designing control 
structures using QCA like testable FSM design, BIST etc. 
Also, reversible implementations of QCA structures [13] 
should be implemented which reduces the switching power 
dissipation not possible in irreversible implementations. 
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  Fig. 8. Schematic of a PCA cell with rule 90/150/165/105

 Fig. 9. Detailed layout of  Rule 90/150/165/105 

Fig. 7.  Detailed layout of Rule 60.


