
Coupled Climate Models on Grids ∗

Sivagama Sundari Sathish Vadhiyar

Supercomputer Education and Research Centre
Indian Institute of Science

Bangalore, India

{sundari@rishi.,vss@}serc.iisc.ernet.in

Ravi Nanjundiah

Centre for Atmospheric & Oceanic Sciences
Indian Institute of Science

Bangalore, India

ravi@caos.iisc.ernet.in

Abstract
Community Climate System Model (CCSM) is a Multi-
ple Program Multiple Data (MPMD) parallel global climate
model comprising atmosphere, ocean, land, ice and coupler
components. The simulations have a time-step of the order
of tens of minutes and are typically performed for periods of
the order of centuries. These climate simulations are highly
computationally intensive and can take several days to weeks
to complete on most of today’s multi-processor systems. Ex-
ecuting CCSM on grids could potentially lead to a significant
reduction in simulation times due to the increase in number
of processors. However, in order to obtain performance gains
on grids, several challenges have to be met. In this work,
we describe our load balancing efforts in CCSM to make it
suitable for grid enabling. We also identify the various chal-
lenges in executing CCSM on grids. Since CCSM is an MPI
application, we also describe our current work on building a
MPI implementation for grids to grid-enable CCSM.

1. Introduction
Community Climate System Model (CCSM) [3] is a coupled
global climate model developed at National Center for At-
mospheric Research (NCAR), with contributions from exter-
nal research groups, funded by the National Science Foun-
dation, Department of Energy (DOE) and National Aero-
nautics and Space Administration (NASA). It is a multi-
component application and consists of four climate sub-
system models, namely atmosphere, ocean, land and ice, and
a coupler component through which these models interact.
CCSM is implemented as a multiple program multiple data
(MPMD) programming model where each component is a
separate parallel program by itself.

CCSM is a highly computationally intensive application
that allows climate researchers to conduct fundamental re-
search into the earth’s past, present and future climate states
through simulations. Each simulation run could span a few
years to a few thousand years of the earth’s climate depend-
ing upon the scientific issue to be studied, while the simu-

∗ This work is supported by Ministry of Information Technology, India,
project ref no. DIT/R&D/C-DAC/2(10)/2006 DT.30/04/07

lation time-steps are typically less than an hour. Such sim-
ulations could take a few days to a few weeks to execute
on most of today’s multi-processor systems. Moreover, as
there are continuous research efforts to increase the numer-
ical grid resolutions and include more scientific processes,
the computational demands of the application are expected
to increase in the near future. Therefore, it is very important
to explore the possibility of significantly reducing simulation
times by executing the application on grid systems.

In this work, we identify the various challenges of exe-
cuting CCSM on grids and our proposed solutions. We also
describe our load balancing strategies to improve the perfor-
mance of CCSM. Finally, we describe our MPI implementa-
tion to enable the execution of CCSM on grids.

2. CCSM on Grid
Grid computing enables computing on multi-institutional,
dynamic, heterogeneous resource pools, virtually expanding
the bounds of resources available to scientific applications.
However, the performance benefit incurred depends largely
on application structure, usage requirements and on intelli-
gent resource allocation.

Some of the benefits of executing highly computationally
intensive and long-running applications like CCSM on a grid
are:

1. Increased Access. While researchers in some institutes
have access to their own powerful supercomputers, re-
searchers in a large number of educational and research
institutes can only access such high performance comput-
ing systems through the grid. Executing CCSM on grids
could therefore enable these climate researchers to per-
form high-resolution global simulations.

2. Increased Resource Availability. Even for users who
have access to supercomputing facilities or dedicated
clusters, executing CCSM across clusters or supercom-
puters enables them to use larger number of processors,
thereby potentially reducing the simulation time.

3. Lower Queue Wait Times. Most supercomputing facil-
ities have a batch queuing systems through which users
submit their jobs. The queue wait times in the batch sys-

tems increase significantly with the number of processors
requested. Executing CCSM across multiple queues en-
ables the submission of multiple small requests to differ-
ent batch systems, thereby decreasing the overall queue
wait times.

However, several issues have to be addressed before these
benefits can be incurred:

1. Performance The application scalability, the component
model scalability, size and frequency of communications,
load-imbalances are issues that could affect the applica-
tion performance on grid.

2. Implementation All communications in CCSM are per-
formed through MPI. One major challenge is to enable
the MPI processes started on different platforms to seam-
lessly connect and communicate, if possible without any
modification to the application.

3. Validation The climate model has currently been sci-
entifically validated for only a few configurations and
on some homogeneous platforms. The simulations are
highly sensitive to various platform and compiler depen-
dent features. Multi-platform executions have to be care-
fully validated.

In the following section we describe the challenges in-
volved in load-balancing CCSM and our work to address
some of the large load-imbalances.

3. Load Balancing Challenges in CCSM
CCSM is an MPMD application with five parallel compo-
nents: four climate models, each corresponding to one of the
climate subsystems viz., atmosphere, land, ice and ocean,
and a coupler which transforms data and coordinates the ex-
change of information across the model components. The
periodic coupling of information occurs at different frequen-
cies for different components. For example, the atmosphere
exchanges information with other components every simu-
lated hour, while the ocean exchanges information with other
components only once in 24 simulated hours (the lower fre-
quency of coupling with ocean is due to the fact that ocean
has much higher inertia and the state changes more slowly
than the other components). Further, several calculations are
performed periodically at different frequencies. For exam-
ple, the radiation parameter calculations which are part of
atmospheric physics are performed only once in 36 time-
steps of atmospheric simulation, where each time-step cor-
responds to 20 simulated minutes.

There are two sources of load imbalance in CCSM: (i)
Load imbalance across components (inter-component load
imbalance), and (ii) Load imbalance across processes of
each component (intra-component load imbalance). Load
balancing across components by allocating suitable num-
ber of processors to each component is complicated because
the components are coupled at various frequencies and the

computations and communications are interleaved. More-
over, the frequencies of some computation-intensive calcu-
lations are user specified. Another difficulty is that there are
restrictions imposed by the components on their paralleliza-
tion. However, the general guideline [1,2] for load-balancing
is to give a large number (close to two-thirds) of the avail-
able processors to atmosphere and then try by trial and error
to minimize idling of atmosphere processors by giving suffi-
ciently many processors to the other components. In spite of
following the above guideline for load-balancing, we iden-
tified a major load-imbalance, due to atmosphere long-wave
radiation calculations, resulting in idling of processors.

The atmosphere component is the most loaded compo-
nent among all components. Hence, any effort in reducing
the time taken for atmosphere component helps in decreas-
ing the overall execution time of CCSM. A major percentage
of atmosphere calculations are the long-wave radiation cal-
culations. These involve the calculation of emissivities and
absorptivities of infrared radiations. These calculations are
highly computation intensive and slowly varying, and hence
performed at periodic intervals instead of at every time-step.
For instance, in an experiment with 8 processors for atmo-
sphere, 4 for ocean, 2 for ice and one each for land and cou-
pler, calculation of absorptivity is 35% of the total atmo-
sphere calculations. Figure 1(a) shows the times spent by an
atmosphere processor performing calculations between re-
ceive and send communications with coupler. While the cou-
pler communications have a period of 1 simulated hour, the
periodicity of the absorptivity calculations is set to 3 simu-
lated hours in this case. The spikes in the graph occurring at
every 3rd simulated hour correspond to these computations.
In these time-steps there is a large load imbalance among
the components and hence, a large idling of the processors
executing non-atmospheric components. This is reflected as
peaks in the communication times of the non-atmospheric
model components, since they are forced to wait until the
coupler finishes its communications with atmosphere. The
coupler itself is idle waiting to communicate with the at-
mosphere. Figure 1(b) shows the receive times of the land
processor.

For atmospheric physics calculations, the atmospheric
grid, consisting of latitudes on one axis and longitude on an-
other, is divided into chunks, where each chunk is a collec-
tion of a fixed number of columns. A column represents all
the vertical levels corresponding to a latitude-longitude pair
(since the coupling between various variables is very tight in
the vertical direction hence parallelization is not generally
done in the vertical direction). Each atmosphere processor
performs the physics calculations corresponding to a set of
chunks. For each chunk, as part of its physics calculations, a
call is made to the absorptivity calculating function, radabs.
Inside radabs, the radiation calculations are performed for
the columns that constitute the chunk. There are no depen-

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Simulation hours

Atmosphere calculations between receive and send communications with coupler

(a) Computations in Atmosphere

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Simulation hours

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Land communication times (recv from coupler)

(b) Idling in Land

Figure 1. Simulation times showing load imbalance due to
long-wave radiation calculations

dencies between the calculations corresponding to any two
columns.

We have developed a multi-level dynamic load-balancing
scheme that addresses the imbalance due to long-wave ra-
diation calculations without introducing delays in any of the
components. We reduce the inter-component load imbalance
by offloading the radiation calculations of atmosphere with
idling processors of other components. Each atmosphere
processor offloads or sends some columns of each chunk
to processors of other components. Then, each processor
of each component including atmosphere performs radiation
calculations on the columns it possesses. After calculations,
the atmosphere processors receive the results corresponding
to the columns it offloaded to other components. The amount
of offloading and the timesteps when the offloading is per-
formed are dynamically determined based on the times the
non-atmosphere processors are ready to share work and the
different times taken for the different atmosphere processors
time to start their long-wave radiation calculations.

The performance gain due to our load balancing scheme
is illustrated in Figure 2. The experiments were conducted
on a cluster of 8 dual-core AMD Opteron 1214 based 2.21
GHz Sun Fire servers running CentOS release 4.3 with 2
GB RAM, 250 GB Hard Drive and connected by Gigabit
Ethernet. The execution time reported is for a climate simu-
lation for 30 days using the lowest resolution data. The per-
formance benefits are very high for lower number of pro-
cessors. In this case, all components execute on only one or
two processors. The ratio of the number of atmosphere to
other processors is approximately 1:4. Thus, each processor
will have to perform only around one-fifth of the original ra-
diation calculations. As the number of processors available
for the simulation increases, the number of atmosphere pro-
cessors increases faster than those of the other components.
This is because atmosphere is more computationally inten-
sive and processors have to be distributed among the com-
ponents in proportion to their computational load so as to
obtain the lower simulation times. When sufficiently many
processors are available, the ratio of atmosphere processors
to all other processors is around 2:1 and each processor will
have to perform two-thirds of the original radiation calcula-
tions.

4. Execution of CCSM across clusters
An important issue that dictates the performance of an appli-
cation on a Grid system is the application scalability across
clusters. There are two possible ways of executing CCSM
across clusters:

1. executing one or more components on each cluster, with
each component executed on only one cluster, and

2. executing some components across clusters.

The first option seems promising from the communica-
tion point of view since the components are loosely coupled

6 8 10 12 14 16

2000

3000

4000

5000

6000

7000

8000

Number of available processors

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Execution times on GARL Fire (8 dual−core systems)

Original
Our version

(38%)

(30%)

(21%)

(15%)
(8%) (8%)

Figure 2. Load Balancing Results

and communicate with other components only once in sev-
eral time-steps of their own model simulation. However, the
performance gain is severely limited by the fact that the at-
mosphere model is more computationally intensive than the
other components. Limiting each component to a single clus-
ter implies that the atmosphere model can execute on only as
many processors as available in the largest cluster. If all the
components of CCSM are executed within the largest clus-
ter, the atmosphere component would have been allocated
two-thirds of the processors. Thus the performance gain due
to using multiple clusters, with each component executed
on only one cluster, will correspond to the negligible per-
formance gain obtained due to executing atmosphere on all
processors of the largest cluster over executing atmosphere
on two-thirds of the processors of the largest cluster. More-
over, in the first option, the maximum number of clusters in
the grid that can be used by the applications will be equal to
the number of components of the application.

The second option is better for grid-enabling CCSM since
it executes individual components across clusters. In this op-
tion, the maximum number of clusters that can be used is not
limited by the number of components, but by the scalabil-
ity in performance of the components when executed across
clusters. This requires developing efficient communication
schemes in the various stages of the individual components.
Many current research efforts focus on improving scalability
of individual components on single multi-processor systems,
and scalability to a few thousand processors for most com-
ponents, including atmosphere, has been reported [4,5]. Our
future research will be to achieve a similar scalability across
the grid by developing fault-tolerant versions of different al-
gorithms in the individual components.

5. MPI for Cross-Cluster Communications
CCSM is implemented using the well known Message Pass-
ing Interface (MPI). Enabling and executing CCSM across

different clusters of the grid requires an implementation of
MPI that can interface with the local MPI implementations
on the individual clusters. Our current work is to develop a
solution for seamlessly interfacing the MPI processes started
on different clusters and supercomputers. Although some
existing MPI-implementations have been developed for use
across multiple computing sites [6,7], we propose to use the
local implementations of MPI, which are highly optimized
for their respective systems, for intra-cluster communica-
tions.

Another challenge is to enable communications with
nodes having private/hidden IP addresses. Most clusters
have a front-end/master node and multiple slave nodes. Only
the front-end nodes are accessible from outside the clusters.
The slave nodes have hidden IP addresses. Hence a MPI
communication involving two slave nodes of two different
clusters has to be routed through intermediate nodes. Al-
though there are some existing solutions for dealing with
hidden IPs [8], some of the assumptions made in the so-
lutions prevent them from being used on real multi-cluster
grid environments. For example, PACX-MPI [8] assumes
that one of the processors on each site on which an MPI
process is executing is accessible to the outside world. This
assumption is not true in typical batch systems where the
local MPI processes are started only on the slave nodes. The
front-end nodes are used only for starting the MPI processes
on the slave nodes. Another limitation in existing solutions
is due to the assumption that the front-end nodes of all clus-
ters will be able to directly communicate with each other. In
many environments, the front-end nodes can communicate
only through multiple intermediate nodes.

Our implementation tries to address the above issues by
use of communicating daemons. We have three basic dae-
mons: E-Daemon, S-Daemon and T-Daemon. These dae-
mons are started with suitable arguments at various sites
in order to establish the communicating system. Our MPI
version uses the existing local MPI-implementations for the
intra-site communications, and performs inter-site commu-
nications through these daemons. The MPI process contacts
and connects to the locally accessible S-Daemon to start any
inter-site communication. The S-Daemon in turn contacts
and connects to the T-Daemon at the intermediate site. The
T-Daemon decodes the destination information which is part
of the message header and connects to the E-Daemon. The
E-Daemon performs file read or write depending upon the
MPI call being receive or send. Figure 3 shows the basic
structure of these daemons. Note that the design can be eas-
ily extended to multiple clusters and complex communica-
tion paths merely be starting more daemons. Also, processes
dynamically spawned can prevent blocking on communica-
tions and allow communications to take place in parallel.

In this framework, communications for MPI Send and
MPI Recv happen independently. Let us consider a process
(p1 in figure) in one site (site-I) posting a MPI Send and

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

T−Daemon

E−Daemon

FRONT END

S−Daemon

SITE−I

FILE
SYSTEM

FILE
SYSTEM

SITE−II

FRONT END

SL
A

V
E

 N
O

D
E

S SL
A

V
E

 N
O

D
E

SINTERMEDIATE
 SITE

M
PI P6

M
PI P3

M
PI P4M

PI
 P

1
M

PI
 P

2
M

PI
 P

0

E−Daemon S−Daemon

Figure 3. Inter-cluster MPI Framework

a process (p4 in figure) in another site (site-II) posting a
MPI Recv. When MPI Send is posted, p0 writes the data to
its local file-system and the header to the file-system at site-
II through the daemons as shown by the arrows in the figure.
When MPI Recv is posted, p4 continuously checks for the
corresponding header in the local file-system and when the
file is found (i.e. after the MPI Send at the other site has
completed), the data from the file-system at site-I is read
through the daemons. Note that although the communica-
tion path is the same (symmetric with respect to the sites) for
both send and recv, the entire message is transferred across
the sites only when the recv is posted. Preliminary compar-
isons of time taken for inter and intra cluster transfers are
shown in Figure 4. The experiment involved two clusters in
two sites: a Sun cluster in Indian Institute of Science (IISc),
Bangalore and an IBM AIX cluster in Centre for Develop-
ment of Advanced Computing, Bangalore. The intermediate
node is the front-end node of an IBM cluster at IISc. The
figure clearly shows that with increase in message sizes, the
inter and intra cluster transfer times become comparable.

6. Conclusions
In this work, we have explained our load balancing strat-
egy to make CCSM suitable for grid computing. We also
enumerated our plans for grid enabling CCSM. We have de-
scribed our current efforts in developing a MPI implementa-
tion for cross-cluster communications.

7. Future Work
Our plan is to continue our implementation of MPI for cross-
cluster communications. This MPI will have all the MPI
functions used by CCSM. We then plan to execute CCSM
across clusters and determine the conditions when grid exe-
cutions will be useful. We also plan to improve the scalabil-
ity of the algorithms in CCSM.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06

E
xe

cu
tio

n
 t

im
e

 (
m

ic
ro

-s
e

co
nd

s)

Message Size (in Bytes)

INTER SEND
INTER RECV
INTRA SEND
INTRA RECV

Figure 4. Inter and Intra cluster Communication Times for
Different Message Sizes

References
[1] G. Carr. An Introduction to Load Balancing CCSM3

Components. In Proceedings of Software Engineering Working
Group (SEWG) Meeting, CCSM Workshop, NCAR, June 2005.

[2] G. Carr, M Cordery, J. Drake, M. Ham, F. Hoffman, and
P. Worley. Porting and Performance of the Community Climate
System Model (ccsm3) on the Cray X1. In Proceedings of the
2005 Cray Users Group (CUG) Meeting, Albuquerque, New
Mexico, May.

[3] Community Climate System Model (CCSM). http://www.

ccsm.ucar.edu.

[4] Arthur A. Mirin and William B. Sawyer. A Scalable
Implementation of a Finite-Volume Dynamical Core in the
Community Atmosphere Model. International Journal of
High Performance Computing Applications, 19(3), August
2005.

[5] Arthur A. Mirin and Patrick H. Worley. Extending Scalability
of the Community Atmosphere Model. In Journal of Physics:
Conference Series, 78 (Proceedings of SciDAC 2007), Boston,
MA, June 24-28 2007.

[6] MPICH-VMI2 Teragrid User Manual. http://vmi.ncsa.

uiuc.edu/teragrid/index.php.

[7] Guillaume Mercier Oliver Aumage. MPICH/Madeleine: a
True Multi-Protocol MPI for High Performance Networks.
In 15th International Parallel and Distributed Processing
Symposium (IPDPS’01), 2001.

[8] PACX-MPI. http://www.hlrs.de/organization/amt/

projects/pacx-mpi.

