
Three Tier Proximity Aware Cache

Hierarchy for Multi-core Processors

Akshay Chander, Aravind Narayanan, Madhan R and A.P. Shanti

Department of Computer Science & Engineering,

College of Engineering Guindy, Anna University, Chennai, India

Abstract - Unlimited amounts of fast memory is a

dream for computer programmers. An economical

way to achieve that desire is a memory hierarchy

which takes advantage of locality and cost–

performance ratio of various memory technologies.

Multi-core processors currently in use today do not

take full advantage of the possible memory

hierarchies available. In this paper, we propose a

three-tiered cache hierarchy for a chip

multiprocessor with at least 32 or 64 cores, with a

high-bandwidth shared Level 3 cache for small

groups of, say 8, cores, and private Level 2 and

Level 1 caches for each core, to improve cache

performance in multi-core processors. We make use

of a proximity-aware directory-based coherence

algorithm to improve the performance of the shared

Level 3 caches. This architecture will benefit tasks

where a shared cache is desirable, such as inter-core

communication and performing operations on

shared data structures. This method maximizes the

cache hit rate thereby improving the overall

performance of the memory hierarchy and the

multi-core processor.

Key Words – Multi-core, CMP, Cache Coherence,

Proximity aware, directory

1. Introduction

While manufacturing technology continues to improve,

reducing the size of single gates, physical limits of

semiconductor-based microelectronics have become a

major design concern. Some effects of these physical

limitations can cause significant heat dissipation and

data synchronization problems.

The demand for more capable microprocessors drives

CPU designers to explore various methods of

increasing performance. Some instruction-level

parallelism (ILP) methods like superscalar pipelining

are suitable for many applications, but are inefficient

for others that tend to contain difficult-to-predict code.

Many applications are better suited to thread level

parallelism (TLP) methods, and utilizing multiple

independent CPUs is one common method used to

increase a system's overall TLP. A combination of

increased available space due to refined manufacturing

processes and the demand for increased TLP is the

logic behind the creation of multi-core CPUs. Thus,

multi-core processors (also known as chip

multiprocessors) are increasingly being used to

enhance the throughput and power efficiency of chips.

Initial implementations of chip multiprocessors made

use of two or four cores. However, the number of cores

per chip is increasing rapidly. For example, IBM

manufactures the eight-core Cell Processor [1], and

Tilera has recently introduced the TILE64 [2], a

processor featuring 64 cores on a single chip. Intel’s

Core Duo and Core 2 Duo [3] platforms use a shared

L2 cache and a private L1 cache for each core.

However, IBM’s Cell Processor and Tilera’s Tile64

feature two private levels of cache per core, with no

shared level at all. As the number of cores increase, a

shared cache becomes less viable, as the size and cost

required to implement such a shared cache for all the

cores becomes prohibitive, traffic congestion on the

chip and the speed gains lessen.

Hence, we propose to implement a shared Level 3

cache for small groups of cores. This does not lead to

any of the drawbacks of implementing a shared cache

for a large number of cores, while still maintaining the

positive effects of a shared cache, such as application

pipelining and cache under-utilization, among others.

Thus, in a 64 core chip multiprocessor, each core

would have a private Level 1 and Level 2 cache.

Moreover, each group of, say, 8 cores will have a

shared Level 3 cache to themselves. Thus, we

implement 8 shared Level 3 caches in all for the 64

core processor. We use a modified proximity aware

directory based cache coherence algorithm detailed in

Brown et al. [4]. Thus, the presence of a shared Level 3

cache among a group of 8 cores will facilitate quick

inter-core communication, as the cores can use the

shared Level 3 cache as a communication mechanism

to pass messages. It will enable the group to act in

tandem on particular data, thus enabling collaborative

processing. For example, some cores can pre/post-

process the data, while others perform the actual

computation. Hence, it enables application pipelining

among the group of cores.

2. Related Work

A proximity-aware directory-based coherence

algorithm has been proposed in [4]. It has been

proposed for private Level 2 caches. We tweak this

algorithm to make it suitable for our architecture. That

is, we use the algorithm to maintain cache coherence

among the shared Level 3 caches in our architecture, as

well as to improve the performance of the caches and

reduce congestion on the chip network.

Brown et al. [4] propose an algorithm which is

proximity aware. While a cache block may be present

in other cores, there is no guarantee that the block will

be present in its home core’s cache. Instead of making

a core always retrieve the block from very slow off-

chip memory if it is not present in the home node’s

cache, proximity awareness is called in to enable the

closest sharer of the block to source the required data

to the home core. The advantages of this method are

decreased latency time for accessing a block and

optimized bandwidth utilization. Furthermore, even if

the cache block is present in the home node’s cache, it

might also be present in a cache which is closer to the

requestor. Hence, retrieving it from the closer source

can help save valuable bandwidth and time.

Freescale [5] has proposed an architecture featuring a

shared Level 3 cache. Each core will have a private

Level 1 cache on chip, and a private Level 2 cache

attached as a back-side implementation, which can

significantly improve performance. In order to

facilitate the tasks for which a shared cache would be

desirable, they have also proposed a multi-megabyte

high-bandwidth shared Level 3 cache, which improves

the hit rates, while also providing fast memory access

for input/output and accelerator blocks.

While the Intel Core 2 Duo [3], or AMD Opteron [6]

chips also use a shared cache Level 2 cache, they only

consist of two or four cores, which does not complicate

the design, or pose problems in cache coherence, as a

shared cache is easy to implement for small number of

cores. As the number of cores per chip grows, it

becomes less viable, as we can see in current chip

designs such as the ones used by IBM’s Cell Processor

(8 cores) and Tilera’s Tile64 (64 cores), which do not

feature shared caches.

However our implementation ensures that the Level 3

cache is shared among 8 cores at most, thus bringing

the benefits of a shared cache to a chip featuring a large

number of cores, while at the same time keeping the

negative aspects of a shared cache, such as the high

bandwidth required, traffic congestion and access time

increases, at bay.

The rest of this paper is organized as follows. Section 3

explains in detail the system architecture. Section 4

explains our proposed modifications to the system, and

their detailed functioning. Section 5 features our

implementation and benchmarking plans. Section 6

concludes.

3. Architecure

3.1 Existing Architecture

Our proposed architecture consists of a 64 core chip

multiprocessor, such as the Tilera Tile64 (Fig. 1). It

consists of 64 identical processor cores (tiles)

interconnected with an on-chip network. Each tile is a

comlete full-featured processors, including integrated

Level 1 and Level 2 caches.

Fig. 1 – The Tilera Tile64 chip multiprocessor block diagram

3.2 Proposed Architecture

In addition to the private Level 1 and 2 caches, that it

includes, we add a Level 3 cache for each group of 8

cores.

All the cores of a group will be clustered around the

Level 3 cache so as to minimize the cache access time.

In addition the Level 3 caches have a means of

communication amongst themselves. We note that the

non-uniformity of the latencies when access the Level

3 caches. This non-uniformity (particularly the

difference between the latency for accessing a nearby

node and a node far away) will increase with the

increase in the number of cores on the chip. Accesses

to Level 3 caches other than a core’s home cache will

have to be done over the on-chip network, and will

incur varying latencies depending on the proximity of

the cache, as well as the congestion of the links.

Each Level 3 cache, similar to the one shown below, is

connected to the on chip network which enables it to

communicate with the other shared caches on the chip.

Fig. 2 – The architecture of a group of cores sharing a Level 3

cache

A generic MESI protocol [7], modified for chip multi-

processors can be used as the baseline cache coherence

protocol upon which the proximity aware algorithm [4]

is built. Each cache line is marked with one of four

states: (i) M - Modified: The cache line is present only

in the current cache, and is dirty; (ii) E - Exclusive:

The cache line is present only in the current cache, but

is clean; (iii) S - Shared: Indicates that this cache line

Fig. 3 – Overall architecture for the proposed system

may be stored in other caches of the machine; (iv) I -

Invalid: Indicates that this cache line is invalid. Various

rules are imposed on the access of a cache line, based

on its current state. A cache may satisfy a read from

any state except Invalid. An Invalid line must be

fetched (to the Shared or Exclusive states) to satisfy a

read. A write may only be performed if the cache line

is in the Modified or Exclusive state. If it is in the

Shared state, all other cached copies must be

invalidated first. This is typically done by a broadcast

operation known as Read for Ownership (RFO). A

cache may discard a non-Modified line at any time,

changing to the Invalid state. A Modified line must be

written back first. A cache that holds a line in the

Modified state must snoop (intercept) all attempted

reads (from all of the other CPUs in the system) of the

corresponding main memory location and insert the

data that it holds. This is typically done by forcing the

read to back off (i.e. to abort the memory bus

transaction), then writing the data to main memory and

changing the cache line to the Shared state. A cache

that holds a line in the Shared state must also snoop all

invalidate broadcasts from other CPUs, and discard the

line (by moving it into Invalid state) on a match. A

cache that holds a line in the Exclusive state must also

snoop all read transactions from all other CPUs, and

move the line to Shared state on a match.

The directory is implemented in memory, but each core

will also have a directory cache, which caches

directory state. Thus, time is saved, as instead of access

the off-chip memory based directory each time, it can

access the directory cache itself. Only when there is a

miss in the directory cache does the controller need to

access the off-chip directory.

4. Proposed Solution

The private cache model used by current chip multi-

processors which have a large number of cores suffers

from certain innate disadvantages such as the lack of

easy inter-core communication, inability to operate

simultaneously on shared data and cache under-

utilization, etc.

Our system aims to overcome these disadvantages by

use of a shared Level 3 cache. Because such a shared

cache does not scale well as the number of cores

increase, we partition the cores into groups of, say, 8

cores each, and implement a shared Level 3 cache for

each group (Fig. 3). However, this poses the problem

of cache coherence. Hence, we use a proximity-aware

directory-based cache coherence algorithm, detailed in

[4], to maintain the coherence between the shared

Level 3 caches. This gives rise to efficient bandwidth

utilization and savings both during access to main

memory, and access to the other shared caches. It also

saves time, as it cuts back on frequent and unnecessary

memory accesses.

Proximity aware coherence asserts that if data is on the

chip multiprocessor, a request can be satisfied without

resorting to an off-chip access. This results in lower

access latency and more efficient bandwidth utilization.

The algorithm put forth by Brown et al. [4] differs from

the baseline MESI protocol in a few special cases as

follows. If a block is clean, and a request is issued, the

request is forwarded to the home node. If the block is

not present at the home node during a read miss, but it

is present at other nodes, the home node sends a

message to the closest sharer, requesting it to forward

the required block to the original requestor. The sharer

then sends an ACK to the home node to indicate that it

has forwarded the block. If all the sharers that the home

node sends a message to reply with a NACK, then it

quits and falls back to a main memory access to service

the request. When a remote node receives a forward

request from a home node, it either sends the block if

that is possible, and then sends an ACK back to the

home node, or it replies straight away with a NACK, if

it is not able to forward the block. During a read miss,

if a block is not in the home node’s cache and is in

shared state, forward-exclusive requests are sent to

potential shares, with invalidate request being sent in

parallel to any potential shares who were not sent

forward requests. The remote node’s activities are

similar to the case of read miss.

The Level 3 cache will use the Least Recently Used

cache replacement policy, and will be organized as a

set-associative cache.

The advantages of such a system would be to maximize

hit rates, as an intervening level in between the Level 2

cache and main memory would reduce the number of

required memory accesses. It would also greatly

simplify the migration of a running thread to another

core without having to resort to using the main

memory, which would be very time consuming. The

system also reduces cache under-utilization, since,

when some cores in a group are idle, the other cores

can have access to the whole of the shared resource.

The shared cache also reduces the front-side bus traffic

as effective data sharing between the cores via the

shared Level 3 cache allows requests to be resolved at

the shared cache level, instead of going all the way to

the main memory. It also facilitates easier and faster

inter-core communication and data sharing, which in

turn enables the cores to operate simultaneously on

shared data, as well as enabling application

partitioning/pipelining. The proposed system can be

combined with set prediction to increase the

performance further.

4.1 Proposed Implementation

We propose to implement this architecture on a chip

multiprocessor simulator, such as SESC [8] or

CMPSim [9], both of which support a large number of

cores per chip, in order to gauge the resulting

performance gains quantitatively. We intend to run

various benchmarks using this architecture, such as

FFT computation, Ocean Simulation, Quick-sort, etc.,

provided by the SPLASH Benchmark suite [10], to

compare it with competing systems.

Proximity aware cache coherence has two distinct

advantages – elimination of unnecessary memory

accesses, and the minimization of distance travelled by

shared data. It will also reduce congestion on the on-

chip network, hence improving the performance of the

cores.

5. Conclusion

As the number of cores increase, the problems of cache

coherence and maintaining high performance become

important. We have proposed a system that solves

these hurdles, using a three tier architecture, and a

proximity aware directory based coherence protocol to

maintain cache coherence. Our system improves the

performance of the cores by reducing the overhead

delays created by private caches, and enabling the

cores to make use of shared caches to facilitate inter-

processor communication and to work on shared data

structures simultaneously, and gives rise to various

other benefits.

References

[1] IBM Cell Architecure Project

http://www.research.ibm.com/cell/ProductInfo

rmation/0,,30_118_8825,00.html

[2] Tilera’s Tile64 Multi-core processor -

http://www.tilera.com/pdf/ProBrief_Tile64_W

eb.pdf

[3] Intel’s Core 2 Duo Processor Family -

http://www.intel.com/products/processor/core

2duo/index.htm

[4] Jeffery A. Brown, Rakesh Kumar, and Dean

Tullsen. “Proximity-aware directory-based

coherence for multi-core processor

architectures” in the Proceedings of the

nineteenth annual ACM symposium on

Parallel algorithms and architectures, San

Diego, California, USA, 2007, pp. 126-134

[5] A Smarter Approach to Multi Core:

Freescale’s Next Generation Communications

Platform -

http://www.freescale.com/files/32bit/doc/whit

e_paper/MULTICOREFTFWP.pdf

[6] AMD Opteron Processor Family

http://www.amd.com/us-en/Processors/

[7] J. Laudon and D. Lenoski. “The SGI Origin:

A ccnuma Highly Scalable Server”, in the In

ISCA ’97: Proceedings of the 24th annual

international symposium on Computer

architecture, pp 241–25, New York, NY,

USA, 1997.

[8] SESC: cycle accurate architectural simulator -

http://sesc.sourceforge.net/, Jose Renau,

University of California, Santa Cruz.

[9] CMP-SIM: An Environment for Simulating

Chip Multiprocessor (CMP) Architectures -

http://www.utdallas.edu/~rama.sangireddy/C

MP-SIM/. Dr. Rama Sangireddy, Assistant

Professor, Department of Electrical

Engineering, University of Texas at Dallas

[10] Steven Cameron Woo, Moriyoshi Ohara,

Evan Torrie, Jaswinder Pal Singh, and Anoop

Gupta. “The SPLASH-2 Programs:

Characterization and Methodological

Considerations”, in the Proceedings of the

22nd International Symposium on Computer

Architecture, pp. 24-36, Santa Margherita

Ligure, Italy, June 1995

[11] M. M. Michael and A. K. Nanda. Design and

performance of directory caches for scalable

shared memory multiprocessors. In HPCA

’99: Proceedings of the 5th International

Symposium on High Performance Computer

Architecture, page 142, Washington, DC,

USA, 1999. IEEE Computer Society

