
Three Tier Proximity Aware Cache 

Hierarchy for Multi-core Processors 
 

 

Akshay Chander, Aravind Narayanan, Madhan R and A.P. Shanti 

Department of Computer Science & Engineering,  

College of Engineering Guindy, Anna University, Chennai, India 

 

 
Abstract - Unlimited amounts of fast memory is a 

dream for computer programmers.  An economical 

way to achieve that desire is a memory hierarchy 

which takes advantage of locality and cost–

performance ratio of various memory technologies. 

Multi-core processors currently in use today do not 

take full advantage of the possible memory 

hierarchies available. In this paper, we propose a 

three-tiered cache hierarchy for a chip 

multiprocessor with at least 32 or 64 cores, with a 

high-bandwidth shared Level 3 cache for small 

groups of, say 8, cores, and private Level 2 and 

Level 1 caches for each core, to improve cache 

performance in multi-core processors. We make use 

of a proximity-aware directory-based coherence 

algorithm to improve the performance of the shared 

Level 3 caches. This architecture will benefit tasks 

where a shared cache is desirable, such as inter-core 

communication and performing operations on 

shared data structures. This method maximizes the 

cache hit rate thereby improving the overall 

performance of the memory hierarchy and the 

multi-core processor.  
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1. Introduction 
 

 

While manufacturing technology continues to improve, 

reducing the size of single gates, physical limits of 

semiconductor-based microelectronics have become a 

major design concern. Some effects of these physical 

limitations can cause significant heat dissipation and 

data synchronization problems.  

 

The demand for more capable microprocessors drives 

CPU designers to explore various methods of 

increasing performance. Some instruction-level 

parallelism (ILP) methods like superscalar pipelining 

are suitable for many applications, but are inefficient 

for others that tend to contain difficult-to-predict code. 

Many applications are better suited to thread level 

parallelism (TLP) methods, and utilizing multiple 

independent CPUs is one common method used to 

increase a system's overall TLP. A combination of 

increased available space due to refined manufacturing 

processes and the demand for increased TLP is the 

logic behind the creation of multi-core CPUs. Thus, 

multi-core processors (also known as chip 

multiprocessors) are increasingly being used to 

enhance the throughput and power efficiency of chips.  

 

Initial implementations of chip multiprocessors made 

use of two or four cores. However, the number of cores 

per chip is increasing rapidly. For example, IBM 

manufactures the eight-core Cell Processor [1], and 

Tilera has recently introduced the TILE64 [2], a 

processor featuring 64 cores on a single chip. Intel’s 

Core Duo and Core 2 Duo [3] platforms use a shared 

L2 cache and a private L1 cache for each core. 

However, IBM’s Cell Processor and Tilera’s Tile64 

feature two private levels of cache per core, with no 

shared level at all. As the number of cores increase, a 

shared cache becomes less viable, as the size and cost 

required to implement such a shared cache for all the 

cores becomes prohibitive, traffic congestion on the 

chip and the speed gains lessen. 

 

Hence, we propose to implement a shared Level 3 

cache for small groups of cores. This does not lead to 

any of the drawbacks of implementing a shared cache 

for a large number of cores, while still maintaining the 

positive effects of a shared cache, such as application 

pipelining and cache under-utilization, among others. 

Thus, in a 64 core chip multiprocessor, each core 

would have a private Level 1 and Level 2 cache. 

Moreover, each group of, say, 8 cores will have a 

shared Level 3 cache to themselves. Thus, we 

implement 8 shared Level 3 caches in all for the 64 

core processor. We use a modified proximity aware 

directory based cache coherence algorithm detailed in 



Brown et al. [4]. Thus, the presence of a shared Level 3 

cache among a group of 8 cores will facilitate quick 

inter-core communication, as the cores can use the 

shared Level 3 cache as a communication mechanism 

to pass messages. It will enable the group to act in 

tandem on particular data, thus enabling collaborative 

processing. For example, some cores can pre/post-

process the data, while others perform the actual 

computation. Hence, it enables application pipelining 

among the group of cores. 

 

 

2. Related Work 
 

 

A proximity-aware directory-based coherence 

algorithm has been proposed in [4]. It has been 

proposed for private Level 2 caches. We tweak this 

algorithm to make it suitable for our architecture. That 

is, we use the algorithm to maintain cache coherence 

among the shared Level 3 caches in our architecture, as 

well as to improve the performance of the caches and 

reduce congestion on the chip network.  

 

Brown et al. [4] propose an algorithm which is 

proximity aware. While a cache block may be present 

in other cores, there is no guarantee that the block will 

be present in its home core’s cache. Instead of making 

a core always retrieve the block from very slow off-

chip memory if it is not present in the home node’s 

cache, proximity awareness is called in to enable the 

closest sharer of the block to source the required data 

to the home core. The advantages of this method are 

decreased latency time for accessing a block and 

optimized bandwidth utilization. Furthermore, even if 

the cache block is present in the home node’s cache, it 

might also be present in a cache which is closer to the 

requestor. Hence, retrieving it from the closer source 

can help save valuable bandwidth and time.  

 

Freescale [5] has proposed an architecture featuring a 

shared Level 3 cache. Each core will have a private 

Level 1 cache on chip, and a private Level 2 cache 

attached as a back-side implementation, which can 

significantly improve performance. In order to 

facilitate the tasks for which a shared cache would be 

desirable, they have also proposed a multi-megabyte 

high-bandwidth shared Level 3 cache, which improves 

the hit rates, while also providing fast memory access 

for input/output and accelerator blocks.  

 

While the Intel Core 2 Duo [3], or AMD Opteron [6] 

chips also use a shared cache Level 2 cache, they only 

consist of two or four cores, which does not complicate 

the design, or pose problems in cache coherence, as a 

shared cache is easy to implement for small number of 

cores. As the number of cores per chip grows, it 

becomes less viable, as we can see in current chip 

designs such as the ones used by IBM’s Cell Processor 

(8 cores) and Tilera’s Tile64 (64 cores), which do not 

feature shared caches. 

 

However our implementation ensures that the Level 3 

cache is shared among 8 cores at most, thus bringing 

the benefits of a shared cache to a chip featuring a large 

number of cores, while at the same time keeping the 

negative aspects of a shared cache, such as the high 

bandwidth required, traffic congestion and access time 

increases, at bay. 

 

The rest of this paper is organized as follows. Section 3 

explains in detail the system architecture. Section 4 

explains our proposed modifications to the system, and 

their detailed functioning. Section 5 features our 

implementation and benchmarking plans. Section 6 

concludes. 

 

 

3. Architecure 

 
3.1 Existing Architecture 
 
Our proposed architecture consists of a 64 core chip 

multiprocessor, such as the Tilera Tile64 (Fig. 1). It 

consists of 64 identical processor cores (tiles) 

interconnected with an on-chip network. Each tile is a 

comlete full-featured processors, including integrated 

Level 1 and Level 2 caches. 

 

 
Fig. 1 – The Tilera Tile64 chip multiprocessor block diagram 



3.2 Proposed Architecture 
 

In addition to the private Level 1 and 2 caches, that it 

includes, we add a Level 3 cache for each group of 8 

cores.  

 

All the cores of a group will be clustered around the 

Level 3 cache so as to minimize the cache access time. 

In addition the Level 3 caches have a means of 

communication amongst themselves. We note that the 

non-uniformity of the latencies when access the Level 

3 caches. This non-uniformity (particularly the 

difference between the latency for accessing a nearby 

node and a node far away) will increase with the 

increase in the number of cores on the chip. Accesses 

to Level 3 caches other than a core’s home cache will 

have to be done over the on-chip network, and will 

incur varying latencies depending on the proximity of 

the cache, as well as the congestion of the links. 

 

Each Level 3 cache, similar to the one shown below, is 

connected to the on chip network which enables it to 

communicate with the other shared caches on the chip. 

 

 

 
Fig. 2 – The architecture of a group of cores sharing a Level 3 

cache 

 

 

A generic MESI protocol [7], modified for chip multi-

processors can be used as the baseline cache coherence 

protocol upon which the proximity aware algorithm [4] 

is built. Each cache line is marked with one of four 

states: (i) M - Modified: The cache line is present only 

in the current cache, and is dirty; (ii) E - Exclusive: 

The cache line is present only in the current cache, but 

is clean; (iii) S - Shared: Indicates that this cache line 

 
Fig. 3 – Overall architecture for the proposed system 

 

 

may be stored in other caches of the machine; (iv) I - 

Invalid: Indicates that this cache line is invalid. Various 

rules are imposed on the access of a cache line, based 

on its current state. A cache may satisfy a read from 

any state except Invalid. An Invalid line must be 

fetched (to the Shared or Exclusive states) to satisfy a 

read. A write may only be performed if the cache line 

is in the Modified or Exclusive state. If it is in the 

Shared state, all other cached copies must be 

invalidated first. This is typically done by a broadcast 

operation known as Read for Ownership (RFO). A 

cache may discard a non-Modified line at any time, 

changing to the Invalid state. A Modified line must be 

written back first. A cache that holds a line in the 

Modified state must snoop (intercept) all attempted 

reads (from all of the other CPUs in the system) of the 

corresponding main memory location and insert the 

data that it holds. This is typically done by forcing the 

read to back off (i.e. to abort the memory bus 

transaction), then writing the data to main memory and 

changing the cache line to the Shared state. A cache 

that holds a line in the Shared state must also snoop all 

invalidate broadcasts from other CPUs, and discard the 

line (by moving it into Invalid state) on a match. A 

cache that holds a line in the Exclusive state must also 

snoop all read transactions from all other CPUs, and 

move the line to Shared state on a match. 

 

The directory is implemented in memory, but each core 

will also have a directory cache, which caches 

directory state. Thus, time is saved, as instead of access 

the off-chip memory based directory each time, it can 

access the directory cache itself. Only when there is a 

miss in the directory cache does the controller need to 

access the off-chip directory. 

 

 

4. Proposed Solution 
 

 

The private cache model used by current chip multi- 

processors which have a large number of cores suffers 

from certain innate disadvantages such as the lack of 



easy inter-core communication, inability to operate 

simultaneously on shared data and cache under-

utilization, etc. 

 

Our system aims to overcome these disadvantages by 

use of a shared Level 3 cache. Because such a shared 

cache does not scale well as the number of cores 

increase, we partition the cores into groups of, say, 8 

cores each, and implement a shared Level 3 cache for 

each group (Fig. 3). However, this poses the problem 

of cache coherence. Hence, we use a proximity-aware 

directory-based cache coherence algorithm, detailed in 

[4], to maintain the coherence between the shared 

Level 3 caches. This gives rise to efficient bandwidth 

utilization and savings both during access to main 

memory, and access to the other shared caches. It also 

saves time, as it cuts back on frequent and unnecessary 

memory accesses. 

 

Proximity aware coherence asserts that if data is on the 

chip multiprocessor, a request can be satisfied without 

resorting to an off-chip access. This results in lower 

access latency and more efficient bandwidth utilization. 

The algorithm put forth by Brown et al. [4] differs from 

the baseline MESI protocol in a few special cases as 

follows. If a block is clean, and a request is issued, the 

request is forwarded to the home node. If the block is 

not present at the home node during a read miss, but it 

is present at other nodes, the home node sends a 

message to the closest sharer, requesting it to forward 

the required block to the original requestor. The sharer 

then sends an ACK to the home node to indicate that it 

has forwarded the block. If all the sharers that the home 

node sends a message to reply with a NACK, then it 

quits and falls back to a main memory access to service 

the request. When a remote node receives a forward 

request from a home node, it either sends the block if 

that is possible, and then sends an ACK back to the 

home node, or it replies straight away with a NACK, if 

it is not able to forward the block. During a read miss, 

if a block is not in the home node’s cache and is in 

shared state, forward-exclusive requests are sent to 

potential shares, with invalidate request being sent in 

parallel to any potential shares who were not sent 

forward requests. The remote node’s activities are 

similar to the case of read miss. 

 

The Level 3 cache will use the Least Recently Used 

cache replacement policy, and will be organized as a 

set-associative cache. 

 

The advantages of such a system would be to maximize 

hit rates, as an intervening level in between the Level 2 

cache and main memory would reduce the number of 

required memory accesses. It would also greatly 

simplify the migration of a running thread to another 

core without having to resort to using the main 

memory, which would be very time consuming. The 

system also reduces cache under-utilization, since, 

when some cores in a group are idle, the other cores 

can have access to the whole of the shared resource. 

The shared cache also reduces the front-side bus traffic 

as effective data sharing between the cores via the 

shared Level 3 cache allows requests to be resolved at 

the shared cache level, instead of going all the way to 

the main memory. It also facilitates easier and faster 

inter-core communication and data sharing, which in 

turn enables the cores to operate simultaneously on 

shared data, as well as enabling application 

partitioning/pipelining. The proposed system can be 

combined with set prediction to increase the 

performance further. 

 

 

4.1 Proposed Implementation 
 

 

We propose to implement this architecture on a chip 

multiprocessor simulator, such as SESC [8] or 

CMPSim [9], both of which support a large number of 

cores per chip, in order to gauge the resulting 

performance gains quantitatively. We intend to run 

various benchmarks using this architecture, such as 

FFT computation, Ocean Simulation, Quick-sort, etc., 

provided by the SPLASH Benchmark suite [10], to 

compare it with competing systems. 

 

Proximity aware cache coherence has two distinct 

advantages – elimination of unnecessary memory 

accesses, and the minimization of distance travelled by 

shared data. It will also reduce congestion on the on-

chip network, hence improving the performance of the 

cores. 

 

 

5. Conclusion 
 

 

As the number of cores increase, the problems of cache 

coherence and maintaining high performance become 

important. We have proposed a system that solves 

these hurdles, using a three tier architecture, and a 

proximity aware directory based coherence protocol to 

maintain cache coherence. Our system improves the 

performance of the cores by reducing the overhead 

delays created by private caches, and enabling the 

cores to make use of shared caches to facilitate inter-

processor communication and to work on shared data 

structures simultaneously, and gives rise to various 

other benefits. 
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