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Abstract 
Caches in Chip Multiprocessors (CMPs) are 

organized as private L1 caches or large shared L2 cache 

or both. Most of the recent researchers have focused on 

architectural and circuit techniques to increase 

performance.  

Variable Forwarding Cache Coherency combines 

the advantages of private caches and shared caches, i.e., 

low latency of L1 and miss rate of shared L2. This paper 

proposes a methodology to improve performance of the 

system by using variable forwarding cache coherence 

technique in CMPs.  

 

1. Introduction 
 

The ever-increasing levels of on-chip integration 

have enabled phenomenal improvements in computer 

system performance. The perpetual market pressure for 

improved performance is driving designers to build 

shared memory systems with large numbers of processors 

in them.  

Chip-multiprocessors (CMPs) are gaining popularity 

both in small devices as well as the high end servers. Data 

sharing amongst the processors is an inherent 

characteristic, which demands data consistency.  

Typically, data consistency is maintained by cache 

coherency protocols. 

Cache coherence implies maintaining data 

consistency amongst the caches of a multiprocessor 

system so that no data is lost or overwritten before it is 

transferred from a cache to the target memory. When 

multiple processors with separate caches share a common 

memory, it is necessary to keep the caches in a state of 

coherence by ensuring that any shared operand that is 

changed in any cache is changed throughout the entire 

system (one of the simplest of which is explained by the 

following diagram).  

In a CMP, communication is typically carried out 

through cache coherence actions across the private 

caches. Cache coherence actions involve tag lookups and 

off-chip memory accesses which are power intensive 

processes.  

The primary objective of the project is to improve 

the performance by incorporating adaptive caching into 

the existing cache structure for a multiprocessor system.  

 

 
Figure 1 

 

In the proposed implementation, based variable 

forwarding technique performance improvement is 

achieved by storing a Single Instance of a data and 

forwarding the data to the neighboring caches instead of 

replacing, thus reducing the off chip traffic as well as 

increasing the lifetime of data. 
 

2. Related Work 
 

Chip-multiprocessors (CMPs) have gained a lot of 

interest as a micro-architectural style for future 

microprocessors for high-performance systems as well as 

low-power systems. Much of the attention of recent 

research focuses on architectural and circuit techniques 

for increasing performance and reducing on-chip 

processor energy consumption via techniques such as 

coarse-grain coherence tracking [5, 6], token coherence 

[7], cache partitioning [3, 4], system bus optimizations 

[9], speculative-snoop power reduction technique [2], 

filtering remote snoop requests [10] and reducing 

switching activity [2]. Cache partitioning [4], (both static 

and dynamic) though being a good way of maintaining 

compositionality, consumes a huge amount of power. 

Off-chip accesses are one of the costliest operations in 

terms of power, especially because of the wastage of 

energy due to tag look ups on a global cache miss (due to 

cache miss or upgrade). [1] explains the concept of 

cooperative caching by dividing the data in a CMP into 

single instances and multiple instances. And subsequently 



applying either Token Coherence or 1-chance forwarding 

for updates on the data. Our strategy increases the 

longevity of single instance data by applying variable 

forwarding and adding a victim cache, thus reducing the 

number of off-chip accesses.  

 

3. System Architecture 

 
The basic multiprocessor architecture for 

implementation is described in Figure 2 each of which 

consists of: four nodes: processor, L1 cache, the 

interconnection network and additional hardware: 

Singleton Lookup Buffer (SLB) and Data Analysis Unit 

(DAU). 

The SLB and DAU are as shown in Figure 3. The 

SLB keeps track of all the single instances of data used 

by its corresponding processor. The DAU comprises of a 

controller, a directory table and a memory element. The 

directory structure is intended to store details of all the 

data elements within the system. The memory element 

serves as a Victim Cache. A high-speed bus acts as the 

Interconnection  Network. 

 

4. Proposed Methodology 

 
DAU consists of a set of counters for every unique 

data element corresponding to the processor accessing it 

and subsequently, based on the frequency of usage, either 

a singleton is replicated or vice versa. Singletons can 

either be evicted or forwarded from a cache.  

The forwarding technique adopted is variable 

forwarding, where in, data is forwarded to the processor 

where it is predicted to have a high probability of being 

accessed in the near future. 

 

 

 
 

Figure 2  

 
Figure 3 

Predictions are made based on the access history of 

the data by the DAU. Data is forwarded as long as one of 

its counter values is greater than the threshold and there 

exists at least one replaceable data element; otherwise, it 

is evicted. Data is evicted when its counter value decrease 

below the threshold. On eviction, data is further stored in 

a victim cache. This increases the lifetime of a singleton 

in the system, thus minimizing the probability of having 

to make an off-chip memory access. Also, maintaining a 

singleton in the system eliminates the use of cache 

coherency protocol for these data elements 

Replicates are overwritten with notifications sent to 

the hardware units. Coherency among replicates is 

maintained using a cache coherency protocol. The 

protocol intended to be used is directory protocol since 

the DAU can act as the directory. 

  

5. Data Flow Design 
 

Some of the important scenarios that define the system 

are described as below. 

Initial State of the System: (cold start scenario) When 

an address is generated by one node, it will be a 

compulsory miss in the cache and hence will be fetched 

from memory. It will then be stored in the L1 cache as 

well as the SLB and DAU. The process can be described 

as follows 

BEGIN 

    Pi generates an address: addj 
    Do 

        Cache Search 

      If cache miss Do 

          SLB Search 

          if SLB miss Do 

            DAU search 

            if DAU miss Do 

                Access Memory 

                Get Data from Memory 

                Make a new entry  

                Increment Counter Value  



                Save Data & address in Victim cache 

                Send Data to Node 

           end do (DAU miss) 

       end Do (SLB Miss) 

       Save Data (in cache) 

       Make an entry into SLB 

     end if (cache miss)   

    end Do 

END 

Data Look Up in the System:  Depending on the number 

of instances of a particular data present in different 

caches, the data is classified as a singlet or replicate and 

accordingly different policies are adopted. If it is singlet, 

then the processor requesting data receives a message 

from the DAU that contains the host id which is storing 

the data at that time. The processor then probes and 

retrieves the required data. If the data is a replicate, since 

multiple copies already exist, the processor receives only 

the data, which it stores in its L1. 

Prerequisite: 

The data whose address (addj) is generated by a node (say 

Pj) is present in the system. 

BEGIN 

    Pj generates an address: addj 

    if cache miss Do 

        SLB search 

        if SLB miss Do 

            DAU search 

            if  DAU hit Do 

if(number  Instances(Data(addj))=Multiple )Do 

  make an entry into the Pj cell of the data 

   initialize the counter for Pj for the data                     

   return{message, data} 

 end if (Multiple Instances) 

 else Do 

    make an entry into the Pj cell of the data 

    initialize the counter for Pj for the data                     

     return{message, hostAddress }  

 end else (Multiple Instances) 

            end if (DAU hit)   

         end if (SLB miss) 

      end if (cache miss) 

END 

Pj after receiving message 

BEGIN 

    Check message 

    if (message == multiple instances of data) Do 

        save data in cache 

    end if 

    else Do 

        save pointer in SLB 

       access data  from the node corresponding to the    

        pointer 

    end else       

END 

Data Transfer in the System: Transfer of data from one 

node to another node occurs when a single instance in the 

system is being accessed very frequently by only one 

processor which isn’t the host processor. In such a case, 

the data instance will be moved from the cache of the 

host processor to that of the destination processor (i.e the 

one that currently accesses the data frequently).  

In the following pseudo code, Phost represents the 

processor that stores the data instance, Pref represents the 

processor that is pointing to the data instance and Pdest 

represents the processor to which the data instance has to 

be moved to. Pref1 indicates the processor which is the 

potential destination. 

Prerequisite: 

Processors Pj, Pk and Pl (Pref) are pointing to Pi, which 

holds the data. The counter parameters of Pi < threshold 

and one of {Pj,Pk,Pl } > threshold. 

Node: DAU 

BEGIN 

 if((Pref1.counter>threshold)and(Phost.counter<threshold)) 

         Pdest = Prefl 
         Send the destination processor’s id and a pointer   

         to the data to Phost 

  end if 

END 

Node: Phost 
After receiving the destination processor’s id and the data 

address from the DAU  

BEGIN 

      Update Entry in the SLB  

       Send the update to all the processors accessing the    

       data 

       Send the data to the destination processor’s cache 

END 

Node:Pref 

After receiving the data address and the destination 

processor’s id from Phost  

BEGIN 

      Store the data in the cache 

      Update Entry in the SLB  

END 

Node: Pdest  

After receiving the data address and the data from the 

Phost  

BEGIN 

      Update Entry in its SLB  

END 

 

Data Replication in the System: The DAU, on finding 

that a single instance is being accessed often by the host 

and at least one of the reference processors send a 

message to the host for replication. The host in turn sends 

a message to all the other nodes currently accessing the 

data, and subsequently multicasts the data. 

 



Prerequisite: 

If Pj, Pk or Pref pointing to Pi and the counter parameter of 

either Pj or Pk crosses the threshold value along with Pi’s 

counter value being higher than threshold. 

Node Pi 

 BEGIN 

   Send the data pointer and data to all the processors  

    accessing the single instance. 

    Delete Entry in the SLB  

 END 

Node Pothers 

  After receiving the data pointer and the data 

   BEGIN 

   Delete Entry in the SLB 

    Store Data in the Cache  

   END 

Removal & Eviction of Data in the System: The data 

present in one location in the L1 cache of a node can 

either be removed permanently from the system or it can 

be evicted and stored in another cache. If a data has 

multiple instances in the system, and it is being replaced 

by a singlet, then the data is deleted from the system. On 

the other hand, if the data being replaced is a single 

instance then instead of being overwritten the data is 

evicted and is stored in a Victim cache inside the DAU.  

Prerequisite: data is evicted in Pj. 

BEGIN 

     Phost.Send( message,address) to DAU        

     if (numberInstances(Data(addj)) in DAU = 1)Do 

         if (number of Pref  = 0)  Do 

           evict the data from Phost  

           write the data into the Victim Cache 

         else 

find the next node out of Pref with the highest 

counter value 

              copy the data to that node 

multicast message to all the Pref & the old Phost 

for updating their respective SLB entries   

         end Do(Pref=0) 

     else  

        if(only 1 counter > threshold parameter) Do       

singlify the data (store the data only in this node 

and multicast messages to all the nodes that 

contains the data to delete  and update their 

respective SLB entries)   

         end if 

         else 

            if(none of the counter > threshold parm) Do 

               find the node with the highest counter value. 

  singlify the data 

            end if 

       else if (numberInstances(Data(addj)) in DAU>1)Do 

         Delete the Data   

        end if         

 END 

6. Implementation 

 
The implementation is being done in Verilog using 

ModelSim Simulator. The inputs for comparison used are 

address traces of Simple Scalar for different SPEC95 

Benchmark applications. The following graph in Figure 4 

& 5 shows the improvement in the on-chip hit rate.  

The first mix consists of the applications 

Compress95, Hydro2D, Ijpeg, TomcatV and the second 

consist of Apsi, Perl, Turb3D and Wave5.  Turbo3D and 

Wave5 has shown an improvement of 7 and 5 percent 

respectively, while the improvement for the average case 

is 0.4. This is due to overlapping of the address space of 

the two programs which reaps the maximum benefits of 

the   proposed architecture.  

 

 

 

Comparative Analysis of Benchmark Programs 

using proposed architecture (only read 

instructions) - MIX I
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Figure 4  

 

Comparative Analysis of Benchmark Programs using 

proposed architecture (only read instructions) - MIX II
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Figure 5 

 

7. Conclusion 

 
With the increasing need for efficiency, variable data 

forwarding caching stands to be a crucial design 

consideration. The proposed design emphasizes the 



maintenance of unique data elements to the maximum 

extent possible. Also, the lifetime of data elements are 

extended based on their access patterns. These techniques 

can, enhance performance and power efficiency if the 

Data Analysis Unit and Coherence Protocols maintain 

synergy.  

Future Work includes adopting this technique for 

achieving power efficiency. 
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