
Variable Forwarding Cache Coherence for Chip Multiprocessors

Amit Roy

1
, Supriya Vadlamani

1
, T S B Sudarshan

2

1
Student, Computer Science & Information Systems Group,

2
Assistant Professor, Computer Science & Information Systems Group,

Birla Institute of Technology and Sciences, Pilani

{amit_roy, supriya, tsbs}@bits-pilani.ac.in

Abstract
Caches in Chip Multiprocessors (CMPs) are

organized as private L1 caches or large shared L2 cache

or both. Most of the recent researchers have focused on

architectural and circuit techniques to increase

performance.

Variable Forwarding Cache Coherency combines

the advantages of private caches and shared caches, i.e.,

low latency of L1 and miss rate of shared L2. This paper

proposes a methodology to improve performance of the

system by using variable forwarding cache coherence

technique in CMPs.

1. Introduction

The ever-increasing levels of on-chip integration

have enabled phenomenal improvements in computer

system performance. The perpetual market pressure for

improved performance is driving designers to build

shared memory systems with large numbers of processors

in them.

Chip-multiprocessors (CMPs) are gaining popularity

both in small devices as well as the high end servers. Data

sharing amongst the processors is an inherent

characteristic, which demands data consistency.

Typically, data consistency is maintained by cache

coherency protocols.

Cache coherence implies maintaining data

consistency amongst the caches of a multiprocessor

system so that no data is lost or overwritten before it is

transferred from a cache to the target memory. When

multiple processors with separate caches share a common

memory, it is necessary to keep the caches in a state of

coherence by ensuring that any shared operand that is

changed in any cache is changed throughout the entire

system (one of the simplest of which is explained by the

following diagram).

In a CMP, communication is typically carried out

through cache coherence actions across the private

caches. Cache coherence actions involve tag lookups and

off-chip memory accesses which are power intensive

processes.

The primary objective of the project is to improve

the performance by incorporating adaptive caching into

the existing cache structure for a multiprocessor system.

Figure 1

In the proposed implementation, based variable

forwarding technique performance improvement is

achieved by storing a Single Instance of a data and

forwarding the data to the neighboring caches instead of

replacing, thus reducing the off chip traffic as well as

increasing the lifetime of data.

2. Related Work

Chip-multiprocessors (CMPs) have gained a lot of

interest as a micro-architectural style for future

microprocessors for high-performance systems as well as

low-power systems. Much of the attention of recent

research focuses on architectural and circuit techniques

for increasing performance and reducing on-chip

processor energy consumption via techniques such as

coarse-grain coherence tracking [5, 6], token coherence

[7], cache partitioning [3, 4], system bus optimizations

[9], speculative-snoop power reduction technique [2],

filtering remote snoop requests [10] and reducing

switching activity [2]. Cache partitioning [4], (both static

and dynamic) though being a good way of maintaining

compositionality, consumes a huge amount of power.

Off-chip accesses are one of the costliest operations in

terms of power, especially because of the wastage of

energy due to tag look ups on a global cache miss (due to

cache miss or upgrade). [1] explains the concept of

cooperative caching by dividing the data in a CMP into

single instances and multiple instances. And subsequently

applying either Token Coherence or 1-chance forwarding

for updates on the data. Our strategy increases the

longevity of single instance data by applying variable

forwarding and adding a victim cache, thus reducing the

number of off-chip accesses.

3. System Architecture

The basic multiprocessor architecture for

implementation is described in Figure 2 each of which

consists of: four nodes: processor, L1 cache, the

interconnection network and additional hardware:

Singleton Lookup Buffer (SLB) and Data Analysis Unit

(DAU).

The SLB and DAU are as shown in Figure 3. The

SLB keeps track of all the single instances of data used

by its corresponding processor. The DAU comprises of a

controller, a directory table and a memory element. The

directory structure is intended to store details of all the

data elements within the system. The memory element

serves as a Victim Cache. A high-speed bus acts as the

Interconnection Network.

4. Proposed Methodology

DAU consists of a set of counters for every unique

data element corresponding to the processor accessing it

and subsequently, based on the frequency of usage, either

a singleton is replicated or vice versa. Singletons can

either be evicted or forwarded from a cache.

The forwarding technique adopted is variable

forwarding, where in, data is forwarded to the processor

where it is predicted to have a high probability of being

accessed in the near future.

Figure 2

Figure 3

Predictions are made based on the access history of

the data by the DAU. Data is forwarded as long as one of

its counter values is greater than the threshold and there

exists at least one replaceable data element; otherwise, it

is evicted. Data is evicted when its counter value decrease

below the threshold. On eviction, data is further stored in

a victim cache. This increases the lifetime of a singleton

in the system, thus minimizing the probability of having

to make an off-chip memory access. Also, maintaining a

singleton in the system eliminates the use of cache

coherency protocol for these data elements

Replicates are overwritten with notifications sent to

the hardware units. Coherency among replicates is

maintained using a cache coherency protocol. The

protocol intended to be used is directory protocol since

the DAU can act as the directory.

5. Data Flow Design

Some of the important scenarios that define the system

are described as below.

Initial State of the System: (cold start scenario) When

an address is generated by one node, it will be a

compulsory miss in the cache and hence will be fetched

from memory. It will then be stored in the L1 cache as

well as the SLB and DAU. The process can be described

as follows

BEGIN

 Pi generates an address: addj
 Do

 Cache Search

 If cache miss Do

 SLB Search

 if SLB miss Do

 DAU search

 if DAU miss Do

 Access Memory

 Get Data from Memory

 Make a new entry

 Increment Counter Value

 Save Data & address in Victim cache

 Send Data to Node

 end do (DAU miss)

 end Do (SLB Miss)

 Save Data (in cache)

 Make an entry into SLB

 end if (cache miss)

 end Do

END

Data Look Up in the System: Depending on the number

of instances of a particular data present in different

caches, the data is classified as a singlet or replicate and

accordingly different policies are adopted. If it is singlet,

then the processor requesting data receives a message

from the DAU that contains the host id which is storing

the data at that time. The processor then probes and

retrieves the required data. If the data is a replicate, since

multiple copies already exist, the processor receives only

the data, which it stores in its L1.

Prerequisite:

The data whose address (addj) is generated by a node (say

Pj) is present in the system.

BEGIN

 Pj generates an address: addj

 if cache miss Do

 SLB search

 if SLB miss Do

 DAU search

 if DAU hit Do

if(number Instances(Data(addj))=Multiple)Do

 make an entry into the Pj cell of the data

 initialize the counter for Pj for the data

 return{message, data}

 end if (Multiple Instances)

 else Do

 make an entry into the Pj cell of the data

 initialize the counter for Pj for the data

 return{message, hostAddress }

 end else (Multiple Instances)

 end if (DAU hit)

 end if (SLB miss)

 end if (cache miss)

END

Pj after receiving message

BEGIN

 Check message

 if (message == multiple instances of data) Do

 save data in cache

 end if

 else Do

 save pointer in SLB

 access data from the node corresponding to the

 pointer

 end else

END

Data Transfer in the System: Transfer of data from one

node to another node occurs when a single instance in the

system is being accessed very frequently by only one

processor which isn’t the host processor. In such a case,

the data instance will be moved from the cache of the

host processor to that of the destination processor (i.e the

one that currently accesses the data frequently).

In the following pseudo code, Phost represents the

processor that stores the data instance, Pref represents the

processor that is pointing to the data instance and Pdest

represents the processor to which the data instance has to

be moved to. Pref1 indicates the processor which is the

potential destination.

Prerequisite:

Processors Pj, Pk and Pl (Pref) are pointing to Pi, which

holds the data. The counter parameters of Pi < threshold

and one of {Pj,Pk,Pl } > threshold.

Node: DAU

BEGIN

 if((Pref1.counter>threshold)and(Phost.counter<threshold))

 Pdest = Prefl
 Send the destination processor’s id and a pointer

 to the data to Phost

 end if

END

Node: Phost
After receiving the destination processor’s id and the data

address from the DAU

BEGIN

 Update Entry in the SLB

 Send the update to all the processors accessing the

 data

 Send the data to the destination processor’s cache

END

Node:Pref

After receiving the data address and the destination

processor’s id from Phost

BEGIN

 Store the data in the cache

 Update Entry in the SLB

END

Node: Pdest

After receiving the data address and the data from the

Phost

BEGIN

 Update Entry in its SLB

END

Data Replication in the System: The DAU, on finding

that a single instance is being accessed often by the host

and at least one of the reference processors send a

message to the host for replication. The host in turn sends

a message to all the other nodes currently accessing the

data, and subsequently multicasts the data.

Prerequisite:

If Pj, Pk or Pref pointing to Pi and the counter parameter of

either Pj or Pk crosses the threshold value along with Pi’s

counter value being higher than threshold.

Node Pi

 BEGIN

 Send the data pointer and data to all the processors

 accessing the single instance.

 Delete Entry in the SLB

 END

Node Pothers

 After receiving the data pointer and the data

 BEGIN

 Delete Entry in the SLB

 Store Data in the Cache

 END

Removal & Eviction of Data in the System: The data

present in one location in the L1 cache of a node can

either be removed permanently from the system or it can

be evicted and stored in another cache. If a data has

multiple instances in the system, and it is being replaced

by a singlet, then the data is deleted from the system. On

the other hand, if the data being replaced is a single

instance then instead of being overwritten the data is

evicted and is stored in a Victim cache inside the DAU.

Prerequisite: data is evicted in Pj.

BEGIN

 Phost.Send(message,address) to DAU

 if (numberInstances(Data(addj)) in DAU = 1)Do

 if (number of Pref = 0) Do

 evict the data from Phost

 write the data into the Victim Cache

 else

find the next node out of Pref with the highest

counter value

 copy the data to that node

multicast message to all the Pref & the old Phost

for updating their respective SLB entries

 end Do(Pref=0)

 else

 if(only 1 counter > threshold parameter) Do

singlify the data (store the data only in this node

and multicast messages to all the nodes that

contains the data to delete and update their

respective SLB entries)

 end if

 else

 if(none of the counter > threshold parm) Do

 find the node with the highest counter value.

 singlify the data

 end if

 else if (numberInstances(Data(addj)) in DAU>1)Do

 Delete the Data

 end if

 END

6. Implementation

The implementation is being done in Verilog using

ModelSim Simulator. The inputs for comparison used are

address traces of Simple Scalar for different SPEC95

Benchmark applications. The following graph in Figure 4

& 5 shows the improvement in the on-chip hit rate.

The first mix consists of the applications

Compress95, Hydro2D, Ijpeg, TomcatV and the second

consist of Apsi, Perl, Turb3D and Wave5. Turbo3D and

Wave5 has shown an improvement of 7 and 5 percent

respectively, while the improvement for the average case

is 0.4. This is due to overlapping of the address space of

the two programs which reaps the maximum benefits of

the proposed architecture.

Comparative Analysis of Benchmark Programs

using proposed architecture (only read

instructions) - MIX I

79

79.5

80

80.5

81

81.5

82

82.5

83

83.5

84

84.5

85

85.5

86

86.5

87

Compress95 Hydro2D Ijpeg TomcatV

Benchmark Programs (Mix I)

H
it
 R
a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

%
Im
p
ro
v
e
m
e
n
t

Hit (SMP) Hit (Proposed Arch) % Improvement

Figure 4

Comparative Analysis of Benchmark Programs using

proposed architecture (only read instructions) - MIX II

83
84

85
86

87
88

89
90

91
92

93
94

95
96

97

Apsi Perl Turb3D Wave5

Benchmark Programs(Mix II)

H
it
 R
a
te

0

1

2

3

4

5

6

7

8

%
 I
m
p
ro
v
e
m
e
n
t

Hit (SMP)

Hit (Proposed Arch)

% Improvement

Figure 5

7. Conclusion

With the increasing need for efficiency, variable data

forwarding caching stands to be a crucial design

consideration. The proposed design emphasizes the

maintenance of unique data elements to the maximum

extent possible. Also, the lifetime of data elements are

extended based on their access patterns. These techniques

can, enhance performance and power efficiency if the

Data Analysis Unit and Coherence Protocols maintain

synergy.

Future Work includes adopting this technique for

achieving power efficiency.

8. References

[1] Jichuan Chang and Gurinder S. Sohi, “Cooperative

Cache for Chip Multiprocessors,” Proc. of the 33
rd

Annual International Symposium on Computer

Architecture (ISCA), 2006, pp 264-276.

[2] C. Saldanha and M. Lipasti “Power Efficient Cache

Coherence,” High Performance Memory Systems,

Springer-Verlag, New York, 2003, pp 63-78.

[3] A.M. Molnos, M.J.M. Heijligers, S.D. Cotofana,

J.T.J. van Eijndhoven, “Compositional, efficient caches

for a chip multi-processor,” Proc. of the conference on

Design, Automation and Test in Europe, 2006, pp 345-

350.

[4] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic

partitioning of shared cache memory,” The Journal of

Supercomputing, vol. 28, issue 1, 2004, pp 7-26.

[5] Moshovos, A., RegionScout, “Exploiting Coarse

Grain Sharing in Snoop-Based Coherence,” Proceedings

of the 32nd Annual International Symposium on

Computer Architecture (ISCA), 2005, pp 234-245.

[6] Jason F. Cantin, Mikko H. Lipasti, and James E.

Smith, “Improving Multiprocessor Performance with

Coarse-Grain Coherence Tracking,” ACM SIGARCH

Computer Architecture news, vol 33, issue 2, 2005, pp

246-257.

[7] Michael R. Marty, Jesse D. Bingham, Mark D. Hill,

Alan J. Hu, Milo M.K.Martin, David A. Wood,

“Improving Multiple-CMP Systems Using Token

Coherence,” Proc. of the 11
th
 International Symposium

on High-Performance Computer Architecture, 2005, pp

328-339.

[8] Mirko Loghi, Massimo Poncino and Luca Benini,

“Cache Coherence Tradeoffs in Shared-Memory

MPSoCs,” ACM Transactions on Embedded Computing

Systems, Vol. 5, No. 2, 2006, pp 383-407.

[9] Liqun Cheng, Naveen Muralimanohar, Karthik

Ramani, Rajeev Balasubramonian, John B. Carter,

“Interconnect-Aware Coherence Protocols for Chip

Multiprocessors,” ACM SIGARCH Computer

Architecture News, Vol. 34, Issue 2, 2006, pp 339-351.

[10] M. Ekman, F. Dahlgren, and P. Stenström,

“Evaluation of Snoop-Energy Reduction Techniques for

Chip-Multiprocessors,” Workshop on Duplicating,

Deconstructing, and Debunking, 2002.

