
 

  

Abstract— Artificial Neural networks have been 

part of an attempt to emulate the learning curve of 

the human nervous system. However the vital 

difference of, nervous system being highly parallel 

and computer processor units remaining largely 

sequential persists. Here an attempt is made to 

bridge that gap with the help of Graphics 

Processing Units (GPUs) which are designed to be 

highly parallel. In particular Back propagation 

networks are considered which use supervised 

learning. Back-propagation algorithms, with no 

data dependencies are embarrassingly parallel and 

hence only a totally parallel system can exploit it 

fully. However, it has also been observed that GPUs 

underperform when either significant overhead in 

calculations is incurred or algorithm is not 

sufficiently parallel.  

 

    Index Terms— feed forward neural networks, 

Graphics processing units, Back-propagation 

networks,  data-parallelism 

I. INTRODUCTION 

HE field of artificial neural networks has 

evolved over the past few years. Various neural 

network models have been proposed. Both 

supervised and unsupervised models of learning 

have been used. Back propagation is one such 

model   which uses supervised learning for training. 

It uses an input layer for input perception, one or 

more hidden layers for appropriate functional 

manipulation of inputs and an output layer which 

decides the required pattern. The striking aspect of 

 
 

this model is that there are no feedback connections 

which reduce its complexity considerably. These 

attempts towards advanced learning capabilities 

have hit a roadblock with limited computation 

abilities compared to a human brain which has a 

tremendous parallel architecture, to provide a real 

time response. 

     Traditional Sequential computing systems which 

have been in use for quite long time are all ill-

equipped to handle the humungous processing 

capabilities neural systems want. Even though 

attempts have been made by adding processor cores, 

software and hardware threading; true parallelism 

has still remained elusive. 

      Graphics Processing Units (GPUs) have been 

used for the purpose of high quality graphics 

rendering for quite some time. However, it has been 

hardly used otherwise. Nowadays all the medium-

to-large computers come with relatively 

inexpensive GPUs. The enormous parallel 

infrastructure of GPU is therefore wasted. The 

Central Processing Unit (CPU) therefore gets 

bottlenecked with all the computational tasks. Also 

the Moore’s law [9] for silicon is nearing saturation. 

Adding more cores or multiprocessors is not 

helping either. The GPUs on the other hand have 

witnessed rapid growth [10] over the past few years 

with few cores in the beginning to 128 cores now.  

   This work therefore attempts to provide a 

parallel infrastructure for the above mentioned 

neural computation model through Stream 

processing [5] with help of GPUs. This way the 

neural engines can be truly over-clocked to be of 

importance in real-life situations. The presented 
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model implemented over Microsoft Accelerator [1] 

C# Platform provides a 2x to 10x improvement over 

its slower counterpart. 

  The remainder of this paper is organized as 

follows: Section II contains related work, 

Description of problem domain is done in Section 

III, Section IV describes the design of solution with 

parallelization and Section V provides experimental 

results with appropriate comparisons. 

II. RELATED WORK 

Most of the work in optimizing the neural networks 

has been mostly at algorithmic level (tweaking the 

algorithm itself). [6] is one such which achieves 

speedup by adapting a different training 

methodology like parallel dynamic learning 

concept. The primary advantage of this method is 

that it is independent of any architecture constraints. 

However, it is also true that poor implementation 

can diminish the speedup achieved. Making 

synaptic weights a function of certain variables [7] 

is done to improve sensitivity of the network. There 

are some implementations [11] which propose 

parallel implementation using threads, but as 

explained before threads bring with them their own 

problems of synchronization and management 

overhead. In the same way [2] proposes PVM 

(Parallel Virtual Machine), Pthreads, MPI for Self 

Organizing Maps (SOM) but they suffer from their 

own limitations. Using clusters [3] suffers from 

communication overheads and contention delays. 

One striking aspect of these approaches is that, if 

the algorithm gets more and more complex (i.e. 

more sequential), parallelizing it becomes more 

difficult and consequently the GPU implementation 

becomes more difficult and less fruitful than its 

counterparts which can handle that to some extent.  

III. PROBLEM DESCRIPTION 

A. Overview 

      The Back-propagation network considered here 

is the simplest of all in its kind with no 

optimizations at the algorithmic level. Hence, with 

no adjustments the implementation becomes purely 

sequential. Scaling it further makes the situation 

worse with an exponential complexity. Therefore, 

the primary task here is to optimize at an external 

level – at SPMD (Single Program Multiple Data) 

level. 

      Parallelizing it can be done in many ways. 

Firstly, a pseudo-parallel approach can be adopted 

where parallelism can be exploited through a 

threading mechanism. However, the net gain 

obtained is less after accounting the thread overhead 

in their maintenance and synchronization issues. 

Moreover, it is achieved at the cost of several 

pipeline and other delays burdening the CPU. Other 

avenues like OpenMP, MPI (Message Passing 

Interface) also exist, but they again add further to 

the problem of delaying the CPU.    

 Problems like that of Back-propagation networks 

are “massively parallel” where distribution is to the 

fullest extent waiting to be exploited. Also very 

little control like branching structures are required 

here. This serves as an ideal candidate for GPU 

since the fragment processors operate as a grid on 

the independent units of data array. The next section 

will detail the design of the parallel algorithm.   

IV. DESIGN OF THE SOLUTION 

A.    Sequential Design 

Design of the solution is done considering a 

sequential design first and then identifying the 

problematic areas. The primary focus of speedup is 

the training cycle of the Back-propagation feed-

forward network. I chose the training cycle because 

a well trained network can respond to inputs in 

testing phase in real-time. Also, in systems where 

data is dynamic -changing continuously with time- 

training it on new data takes its toll on the 

efficiency of the system if incremental training is 

unavailable.  

The training  is separated into following stages: 

1. Initializing the input and output vectors 

2. Initializing the weights to random values and 

normalizing them. 

3. Repeating the following for number of steps 

equal to number of cycles or until error is 

below threshold: 

3.1Repeat the following for each pattern: 

3.1.1 Calculate the hidden layer output. 

3.1.2 Based on this calculate the output 

layer output. 

3.1.3 Compare the two outputs to get 

error vectors. 



 

3.1.4 Back-propagate the errors by 

updating the weights between input 

and hidden layer and hidden layer 

and output layer. 

3.1.5 Update the learning constant ‘beta’ 

and threshold ‘theta’ of all neurons. 

B. Design with Parallelization 

The design of the algorithm stresses on identifying 

the potential “hotspots” of computation in the 

algorithm and reducing their complexity. However 

there are certain places in the algorithm which are 

better left non-optimized since the cost involved in 

doing so exceeds the net gain obtained. The 

optimizations have also taken into consideration the 

platform on which the program is developed. 

Parallelization is not done in the following sections: 

1. Initializing the input, output and the weights. 

Since, initializing does not involve any 

expensive computation.   

2. Normalizing the weights since it is not 

repetitive and the sequential version has lesser 

overhead.  

3. Final and the most important one is that 

training for a number of cycles is done 

sequentially. The prime reason for this being 

the constraints imposed as a result of 

hardware chosen. The current GPU platforms 

[1] support only arrays of dimension two. 

Since two dimensions are already required to 

store multiple patterns, cycles cannot be 

parallelized. 

However the above implications do not impose a 

significant impediment on the performance of the 

application as gain obtained through the parallel 

sections overshadows this.  

Before parallelizing, the data structures need to be 

redesigned. The Accelerator library provides two 

closely related structures: 

1. Floating Parallel Array (FPA). 

2. Disposable Floating Parallel Array (DFPA). 

The first one is either freshly initialized or 

obtained as result of parallel operations. But the 

latter one can be used to create parallel arrays out of 

existing “primitive” arrays but need to be explicitly 

“disposed”. Hence the latter one is used in 

beginning and in latter portions of program FPAs 

are used. 

The following sections of the algorithm have been 

extensively parallelized: 

1. Four DFPAs are created from existing 

input, output and the two weight vectors 

(weight1 and weight2).The dimensions of the 

vectors are as in Table. I  

                               Table I 

Input number of patterns × 

number of neurons 

in input layer 

weight1(between 

input and hidden layer) 

number of input 

layer neurons ×  

number of hidden 

layer neurons 

weight2(between 

hidden and output 

layer) 

number of hidden 

layer neurons × 

number of output 

layer neurons 

Output number of patterns × 

number of neurons 

in output layer 

2. The following steps are repeated until error 

is lower than threshold or number of cycles is 

exhausted: 

(Note: Steps detailed here forth use the 

primitives (prefixed with ‘PA.’ which stands 

for Parallel Array) provided by the GPU to 

implement vectors additions, multiplications. 

Only important steps are shown.) 

2.1 The inner product of input and weight1 is 

obtained and an activation function is 

applied to obtain the hidden layer 

activation as shown in Table II. 

                     Table II            

FPA temp = 
PA.Add(PA.InnerProduct(input, 
weight1),theta);   
//PA.InnerProduct == Matrix  

//multiplcation 

FPA hidden_activation = 
PA.Reciprocal(PA.Add(PA.Pow(new 
FPA(2.71828f,new 
int[]{num_patterns,number_hidde
n}),PA.Negate(temp)), 1.0f)); 

Comparing the Table II and Table III it is 

evident that two GPU instructions have 

replaced three nested loops of expensive 

calculations. Therefore, two instructions 



 

execute in ‘unit’ time on the GPU 

compared to that on CPU. 

Proceeding in the same direction other 

loops in the computation can also be 

parallelized as follows:  

                    Table III 

for (int k = 0; k < numpat; 
k++) 
{   
 for (int i = 0; i < nh; i++) 
 { 
  hidden[k, i] = 0.0f; 
  for (int j = 0; j < ni;j++) 
  { 
   hidden[k, i] +=  
   iwt[j,i]* input[k,j]; 
  } 
  hidden[k, i] += theta[k,i]; 
  hidden[k, i] =   
1.0f/(float)(1.0+Math.Exp(-
hidden[k, i])); 
 }} 

2.2 Obtaining the output of output layer from 

hidden layer activations and weight2 and 

applying another activation function. 

2.3 Calculating the error in the output as in 

Table IV. 

                  Table IV 

FPA error = 

PA.Subtract(desired_output, 

actual_output); 

2.4 Correcting the errors in the weight vectors   

based on error in the output and updating 

them as shown in Table V. 

                  Table V   

FPA output_weight = 

PA.Add(PA.Multiply(PA.InnerProd

uct(PA.Transpose(hidden,new 

int[]{1,0}),error),output_beta)

,output_weight); 

 

FPA input_weight = 
PA.Add(PA.Multiply(PA.InnerProd

uct(PA.Transpose(input,new 

int[]{1,0}),hidden_error), 

hidden_beta),input_weight); 

2.5 Final and the most important step being 

converting the disposable parallel arrays 

into normal 2-D arrays as shown in Table 

VI. 

                   Table VI 

PA.ToArray(output_weight,out 

array_output_weight); 

The important thing to note here is that all 

the computations performed so far are 

delayed until the last step of converting 

them into primitive arrays and is a case of 

‘delayed computation’. 

The primary advantage of this is decreased 

communication overhead with GPU and 

thus maximum performance. However, 

computation is enforced in some places by 

the use of ‘Eval’ function. 

                            Table VII 

FPA oerror = 

PA.Eval(PA.Subtract(actual_outp

ut, correct_output)); 

This forces computation to be performed 

on data. The placement of these needs to 

be done intelligently to ensure maximum 

performance so that computations queued 

up does not exceed the capacity or 

memory of GPU. This is decided on basis 

of trial-and-error basis.                    

V. EXPERIMENTAL OBSERVATIONS 

A.    Environment 

The following experiments are conducted on a 

personal computer  running AMD Turion X2 1.66 

GHz and Nvidia GeForce 6150 Go GPU with 

256MB Video RAM and Pixel Shader Version 3.0. 

Hence the maximum array size is 4096 × 4096.The 

Operating System chosen is Microsoft Windows XP 

Service Pack 2 with DirectX 9.0c and runtime 

environment is Microsoft .NET 2.0 with C# as the 

language. Microsoft Research Accelerator [1] 

GPGPU library is used. 

  B.   Results 

An object-oriented application is written containing 

the code mentioned in design and is executed in the 

platform mentioned above.   

Two major parameters are varied in the evaluation 

of application:  

1. Number of patterns: This parameter affects 

the dimensionality of input and output 



 

vectors. This is also equal to number of 

distinct patterns presented in each cycle. 

2. Network size: This is equal to number of 

input neurons × number of hidden layer 

neurons × number of output neurons. This is 

typically of order 10^6. 

These parameters are varied against time in 

seconds. Accurate measurement of time is 

accomplished using DirectX Timer. 

The following observations can be made: 

1. As can be noted in Fig.1 initially when the 

number of patterns is less(here for 100) the 

CPU time and GPU are almost equivalent 

and for still lesser values CPU dominates 

but as number increases  growth rate of CPU 

curve is nearly exponential compared to 

GPU. This is due to the fact that at lesser 

values overhead dominates the gain obtained 

through parallelization and vice-versa. 

2. Fig.2 presents another instance of the 

growth mentioned above. For values in 

range 0-200, CPU dominates. But as the 

network is scaled up , CPU time increases at 

a tremendous rate whereas GPU time series 

grows relatively slowly. 

 

 Figure 1 shows time variance of the      

application with the number of patterns 
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