

Abstract— Artificial Neural networks have been

part of an attempt to emulate the learning curve of

the human nervous system. However the vital

difference of, nervous system being highly parallel

and computer processor units remaining largely

sequential persists. Here an attempt is made to

bridge that gap with the help of Graphics

Processing Units (GPUs) which are designed to be

highly parallel. In particular Back propagation

networks are considered which use supervised

learning. Back-propagation algorithms, with no

data dependencies are embarrassingly parallel and

hence only a totally parallel system can exploit it

fully. However, it has also been observed that GPUs

underperform when either significant overhead in

calculations is incurred or algorithm is not

sufficiently parallel.

 Index Terms— feed forward neural networks,

Graphics processing units, Back-propagation

networks, data-parallelism

I. INTRODUCTION

HE field of artificial neural networks has

evolved over the past few years. Various neural

network models have been proposed. Both

supervised and unsupervised models of learning

have been used. Back propagation is one such

model which uses supervised learning for training.

It uses an input layer for input perception, one or

more hidden layers for appropriate functional

manipulation of inputs and an output layer which

decides the required pattern. The striking aspect of

this model is that there are no feedback connections

which reduce its complexity considerably. These

attempts towards advanced learning capabilities

have hit a roadblock with limited computation

abilities compared to a human brain which has a

tremendous parallel architecture, to provide a real

time response.

 Traditional Sequential computing systems which

have been in use for quite long time are all ill-

equipped to handle the humungous processing

capabilities neural systems want. Even though

attempts have been made by adding processor cores,

software and hardware threading; true parallelism

has still remained elusive.

 Graphics Processing Units (GPUs) have been

used for the purpose of high quality graphics

rendering for quite some time. However, it has been

hardly used otherwise. Nowadays all the medium-

to-large computers come with relatively

inexpensive GPUs. The enormous parallel

infrastructure of GPU is therefore wasted. The

Central Processing Unit (CPU) therefore gets

bottlenecked with all the computational tasks. Also

the Moore’s law [9] for silicon is nearing saturation.

Adding more cores or multiprocessors is not

helping either. The GPUs on the other hand have

witnessed rapid growth [10] over the past few years

with few cores in the beginning to 128 cores now.

 This work therefore attempts to provide a

parallel infrastructure for the above mentioned

neural computation model through Stream

processing [5] with help of GPUs. This way the

neural engines can be truly over-clocked to be of

importance in real-life situations. The presented

GNeuron: Parallel Neural Networks with

GPU

Raghavendra D Prabhu
Computer Engineering, National Institute of Technology, Karnataka (NITK)

Karnataka, India

raghu.prabhu13@gmail.com

T

model implemented over Microsoft Accelerator [1]

C# Platform provides a 2x to 10x improvement over

its slower counterpart.

 The remainder of this paper is organized as

follows: Section II contains related work,

Description of problem domain is done in Section

III, Section IV describes the design of solution with

parallelization and Section V provides experimental

results with appropriate comparisons.

II. RELATED WORK

Most of the work in optimizing the neural networks

has been mostly at algorithmic level (tweaking the

algorithm itself). [6] is one such which achieves

speedup by adapting a different training

methodology like parallel dynamic learning

concept. The primary advantage of this method is

that it is independent of any architecture constraints.

However, it is also true that poor implementation

can diminish the speedup achieved. Making

synaptic weights a function of certain variables [7]

is done to improve sensitivity of the network. There

are some implementations [11] which propose

parallel implementation using threads, but as

explained before threads bring with them their own

problems of synchronization and management

overhead. In the same way [2] proposes PVM

(Parallel Virtual Machine), Pthreads, MPI for Self

Organizing Maps (SOM) but they suffer from their

own limitations. Using clusters [3] suffers from

communication overheads and contention delays.

One striking aspect of these approaches is that, if

the algorithm gets more and more complex (i.e.

more sequential), parallelizing it becomes more

difficult and consequently the GPU implementation

becomes more difficult and less fruitful than its

counterparts which can handle that to some extent.

III. PROBLEM DESCRIPTION

A. Overview

 The Back-propagation network considered here

is the simplest of all in its kind with no

optimizations at the algorithmic level. Hence, with

no adjustments the implementation becomes purely

sequential. Scaling it further makes the situation

worse with an exponential complexity. Therefore,

the primary task here is to optimize at an external

level – at SPMD (Single Program Multiple Data)

level.

 Parallelizing it can be done in many ways.

Firstly, a pseudo-parallel approach can be adopted

where parallelism can be exploited through a

threading mechanism. However, the net gain

obtained is less after accounting the thread overhead

in their maintenance and synchronization issues.

Moreover, it is achieved at the cost of several

pipeline and other delays burdening the CPU. Other

avenues like OpenMP, MPI (Message Passing

Interface) also exist, but they again add further to

the problem of delaying the CPU.

 Problems like that of Back-propagation networks

are “massively parallel” where distribution is to the

fullest extent waiting to be exploited. Also very

little control like branching structures are required

here. This serves as an ideal candidate for GPU

since the fragment processors operate as a grid on

the independent units of data array. The next section

will detail the design of the parallel algorithm.

IV. DESIGN OF THE SOLUTION

A. Sequential Design

Design of the solution is done considering a

sequential design first and then identifying the

problematic areas. The primary focus of speedup is

the training cycle of the Back-propagation feed-

forward network. I chose the training cycle because

a well trained network can respond to inputs in

testing phase in real-time. Also, in systems where

data is dynamic -changing continuously with time-

training it on new data takes its toll on the

efficiency of the system if incremental training is

unavailable.

The training is separated into following stages:

1. Initializing the input and output vectors

2. Initializing the weights to random values and

normalizing them.

3. Repeating the following for number of steps

equal to number of cycles or until error is

below threshold:

3.1Repeat the following for each pattern:

3.1.1 Calculate the hidden layer output.

3.1.2 Based on this calculate the output

layer output.

3.1.3 Compare the two outputs to get

error vectors.

3.1.4 Back-propagate the errors by

updating the weights between input

and hidden layer and hidden layer

and output layer.

3.1.5 Update the learning constant ‘beta’

and threshold ‘theta’ of all neurons.

B. Design with Parallelization

The design of the algorithm stresses on identifying

the potential “hotspots” of computation in the

algorithm and reducing their complexity. However

there are certain places in the algorithm which are

better left non-optimized since the cost involved in

doing so exceeds the net gain obtained. The

optimizations have also taken into consideration the

platform on which the program is developed.

Parallelization is not done in the following sections:

1. Initializing the input, output and the weights.

Since, initializing does not involve any

expensive computation.

2. Normalizing the weights since it is not

repetitive and the sequential version has lesser

overhead.

3. Final and the most important one is that

training for a number of cycles is done

sequentially. The prime reason for this being

the constraints imposed as a result of

hardware chosen. The current GPU platforms

[1] support only arrays of dimension two.

Since two dimensions are already required to

store multiple patterns, cycles cannot be

parallelized.

However the above implications do not impose a

significant impediment on the performance of the

application as gain obtained through the parallel

sections overshadows this.

Before parallelizing, the data structures need to be

redesigned. The Accelerator library provides two

closely related structures:

1. Floating Parallel Array (FPA).

2. Disposable Floating Parallel Array (DFPA).

The first one is either freshly initialized or

obtained as result of parallel operations. But the

latter one can be used to create parallel arrays out of

existing “primitive” arrays but need to be explicitly

“disposed”. Hence the latter one is used in

beginning and in latter portions of program FPAs

are used.

The following sections of the algorithm have been

extensively parallelized:

1. Four DFPAs are created from existing

input, output and the two weight vectors

(weight1 and weight2).The dimensions of the

vectors are as in Table. I

 Table I

Input number of patterns ×

number of neurons

in input layer

weight1(between

input and hidden layer)

number of input

layer neurons ×

number of hidden

layer neurons

weight2(between

hidden and output

layer)

number of hidden

layer neurons ×

number of output

layer neurons

Output number of patterns ×

number of neurons

in output layer

2. The following steps are repeated until error

is lower than threshold or number of cycles is

exhausted:

(Note: Steps detailed here forth use the

primitives (prefixed with ‘PA.’ which stands

for Parallel Array) provided by the GPU to

implement vectors additions, multiplications.

Only important steps are shown.)

2.1 The inner product of input and weight1 is

obtained and an activation function is

applied to obtain the hidden layer

activation as shown in Table II.

 Table II

FPA temp =
PA.Add(PA.InnerProduct(input,
weight1),theta);
//PA.InnerProduct == Matrix

//multiplcation

FPA hidden_activation =
PA.Reciprocal(PA.Add(PA.Pow(new
FPA(2.71828f,new
int[]{num_patterns,number_hidde
n}),PA.Negate(temp)), 1.0f));

Comparing the Table II and Table III it is

evident that two GPU instructions have

replaced three nested loops of expensive

calculations. Therefore, two instructions

execute in ‘unit’ time on the GPU

compared to that on CPU.

Proceeding in the same direction other

loops in the computation can also be

parallelized as follows:

 Table III

for (int k = 0; k < numpat;
k++)
{
 for (int i = 0; i < nh; i++)
 {
 hidden[k, i] = 0.0f;
 for (int j = 0; j < ni;j++)
 {
 hidden[k, i] +=
 iwt[j,i]* input[k,j];
 }
 hidden[k, i] += theta[k,i];
 hidden[k, i] =
1.0f/(float)(1.0+Math.Exp(-
hidden[k, i]));
 }}

2.2 Obtaining the output of output layer from

hidden layer activations and weight2 and

applying another activation function.

2.3 Calculating the error in the output as in

Table IV.

 Table IV

FPA error =

PA.Subtract(desired_output,

actual_output);

2.4 Correcting the errors in the weight vectors

based on error in the output and updating

them as shown in Table V.

 Table V

FPA output_weight =

PA.Add(PA.Multiply(PA.InnerProd

uct(PA.Transpose(hidden,new

int[]{1,0}),error),output_beta)

,output_weight);

FPA input_weight =
PA.Add(PA.Multiply(PA.InnerProd

uct(PA.Transpose(input,new

int[]{1,0}),hidden_error),

hidden_beta),input_weight);

2.5 Final and the most important step being

converting the disposable parallel arrays

into normal 2-D arrays as shown in Table

VI.

 Table VI

PA.ToArray(output_weight,out

array_output_weight);

The important thing to note here is that all

the computations performed so far are

delayed until the last step of converting

them into primitive arrays and is a case of

‘delayed computation’.

The primary advantage of this is decreased

communication overhead with GPU and

thus maximum performance. However,

computation is enforced in some places by

the use of ‘Eval’ function.

 Table VII

FPA oerror =

PA.Eval(PA.Subtract(actual_outp

ut, correct_output));

This forces computation to be performed

on data. The placement of these needs to

be done intelligently to ensure maximum

performance so that computations queued

up does not exceed the capacity or

memory of GPU. This is decided on basis

of trial-and-error basis.

V. EXPERIMENTAL OBSERVATIONS

A. Environment

The following experiments are conducted on a

personal computer running AMD Turion X2 1.66

GHz and Nvidia GeForce 6150 Go GPU with

256MB Video RAM and Pixel Shader Version 3.0.

Hence the maximum array size is 4096 × 4096.The

Operating System chosen is Microsoft Windows XP

Service Pack 2 with DirectX 9.0c and runtime

environment is Microsoft .NET 2.0 with C# as the

language. Microsoft Research Accelerator [1]

GPGPU library is used.

 B. Results

An object-oriented application is written containing

the code mentioned in design and is executed in the

platform mentioned above.

Two major parameters are varied in the evaluation

of application:

1. Number of patterns: This parameter affects

the dimensionality of input and output

vectors. This is also equal to number of

distinct patterns presented in each cycle.

2. Network size: This is equal to number of

input neurons × number of hidden layer

neurons × number of output neurons. This is

typically of order 10^6.

These parameters are varied against time in

seconds. Accurate measurement of time is

accomplished using DirectX Timer.

The following observations can be made:

1. As can be noted in Fig.1 initially when the

number of patterns is less(here for 100) the

CPU time and GPU are almost equivalent

and for still lesser values CPU dominates

but as number increases growth rate of CPU

curve is nearly exponential compared to

GPU. This is due to the fact that at lesser

values overhead dominates the gain obtained

through parallelization and vice-versa.

2. Fig.2 presents another instance of the

growth mentioned above. For values in

range 0-200, CPU dominates. But as the

network is scaled up , CPU time increases at

a tremendous rate whereas GPU time series

grows relatively slowly.

 Figure 1 shows time variance of the

application with the number of patterns

 REFERENCES

[1] David Tarditi, Sidd Puri, and Jose Oglesby.:Accelerator:

using data-parallelism to program GPUs for general-purpose

uses.Technical Report MSR-TR-2004-184, Microsoft

Corporation, December, 2005.

[2] Udo Seiffert .: Artificial Neural Networks on Massively

Parallel Computer Hardware. ESANN 2002: 319-330.

[3] Hannes Schabauer, Erich Schikuta, Thomas Weishäupl:

Solving Very Large Traveling Salesman Problems by SOM

Parallelization on Cluster Architectures. PDCAT 2005: 954-

958.

 Figure 2 plots time in seconds against the

network size

 [4] David P. Luebke, Mark Harris, Naga K. Govindaraju,

Aaron E. Lefohn, Mike Houston, John D. Owens, Mark Segal,

Matthew Papakipos, Ian Buck: S07 –“ GPGPU: general-

purpose computation on graphics hardware”. SC 2006: 208.

[5] Suresh Venkatasubramanian.:The Graphics Card As A

Stream Computer.SIGMOD-DIMACS Workshop on

Management and Processing of Data Streams.

[6] Lursinsap, C.; Kim, J.H.: Parallel learning for back-

propagation network in binary field. Circuits and Systems,

1991., IEEE International Sympoisum on Volume , Issue , 11-

14 Jun 1991 Page(s):1477 - 1480 vol.3.

[7] Obayashi, M. Kobayashi, K.: A new method for faster

neural networks learning introducing functions of synaptic

weights.Neural Information Processing, 1999. Proceedings.

ICONIP '99. 6th International Conference on Publication

Date: 1999 Volume: 3, On page(s): 1178-1183 vol.3.

[8] Alexandra Cristea and Toshio Okamoto.: A Parallelization

Method for Neural Networks with Weak Connection Design.

Proc. of the International Symposium on High Performance

Computing,pp. 397-404, 1997.

[9] Gordon E. Moore.: Cramming more components

onto integrated circuits. Electronics, Volume 38, Number 8,

April 19, 1965.

[10] David B. Kirk.: The Future of Graphics Computing.

[11] Thulasiram, R.K. Rahman, R.M. Thulasiraman, P.

Neural network training algorithms on parallel architectures

for finance applications. International Conference on Parallel

Processing Workshops, 2003. Proceedings. 2003 Publication

Date: 6-9 Oct. 2003. On page(s): 236- 243.

