Navigability of Small World Networks

Pierre Fraigniaud CNRS and University Paris Sud http://www.lri.fr/~pierre

INTRODUCTION

INTERACTION NETWORKS

- Communication networks
 - Internet
 - Ad hoc and sensor networks
- Societal networks
 - The Web
 - P2P networks (the unstructured ones)
- Social network
 - Acquaintance
 - Mail exchanges
- Biology (Interactome network), linguistics, etc.

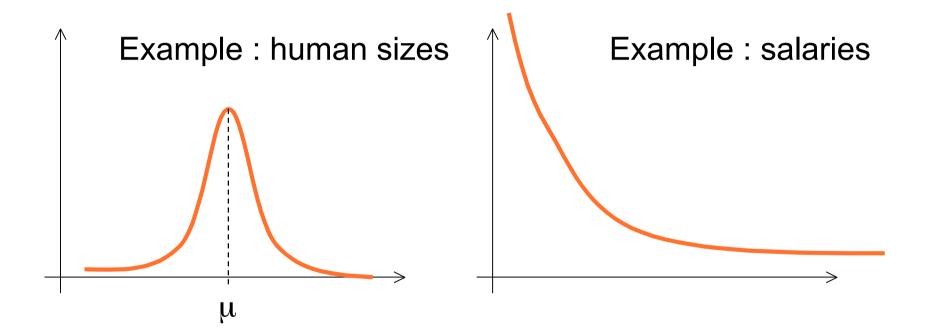
COMMON STATISTICAL PROPERTIES

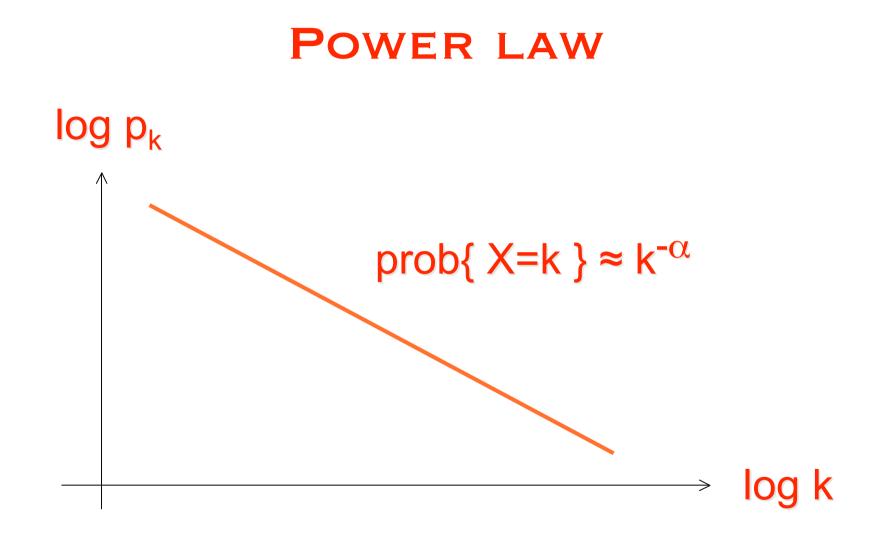
- Low density
- "Small world" properties:
 - Average distance between two nodes is small, typically O(log n)
 - The probability p that two distinct neighbors u₁ and u₂ of a same node v are neighbors is large.

p = clustering coefficient

- "Scale free" properties:
 - Heavy tailed probability distributions (e.g., of the degrees)

GAUSSIAN VS. HEAVY TAIL





RANDOM GRAPHS VS. INTERACTION NETWORKS

- Random graphs: prob{e exists} ≈ log(n)/n
 - low clustering coefficient
 - Gaussian distribution of the degrees
- Interaction networks
 - High clustering coefficient
 - Heavy tailed distribution of the degrees

New problematic

- Why these networks share these properties?
- What model for
 - Performance analysis of these networks
 - Algorithm design for these networks
- Impact of the measures?
- This lecture addresses navigability

NAVIGABILITY

MILGRAM EXPERIMENT

- Source person s (e.g., in Wichita)
- Target person t (e.g., in Cambridge)
 - Name, professional occupation, city of living, etc.
- Letter transmitted via a chain of individuals related on a personal basis
- Result: "six degrees of separation"

NAVIGABILITY

- Jon Kleinberg (2000)
 - Why should there exist short chains of acquaintances linking together arbitrary pairs of strangers?
 - Why should arbitrary pairs of strangers be able to find short chains of acquaintances that link them together?
- In other words: how to navigate in a small worlds?

NEVANLINNA PRICE

- Price rewarding a major contribution in Mathematics for its impact in computer science.
- Laureats
 - 1982 Robert Tarjan
 - 1986 Leslie Valiant
 - 1990 A.A. Razborov
 - 1994 Avi Wigderson
 - 1998 Peter Shor
 - 2002 Madhu Sudan
 - 2006 Jon Kleinberg

AUGMENTED GRAPHS H=G+D

- Individuals as nodes of a graph G
 - Edges of G model relations between individuals deducible from their societal positions
- A number k of "long links" are added to G at random, according to the probability distribution D
 - Long links model relations between individuals that cannot be deduced from their societal positions

GREEDY ROUTING

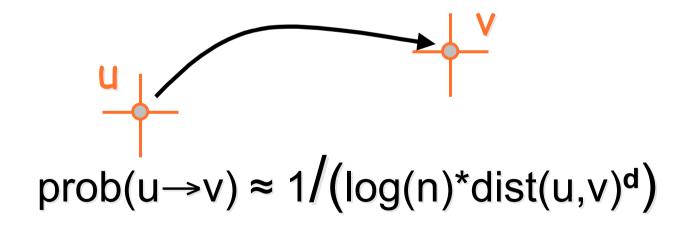
IN AUGMENTED GRAPHS

- Source $s \in V(G)$
- Target $t \in V(G)$
- Current node x selects among its deg_G(x)+k neighbors the closest to t in G, that is according to the distance function dist_G().

Greedy routing in augmented graphs aims at modeling the routing process performed by social entities in Milgram's experiment.

AUGMENTED MESHES KLEINBERG [STOC 2000]

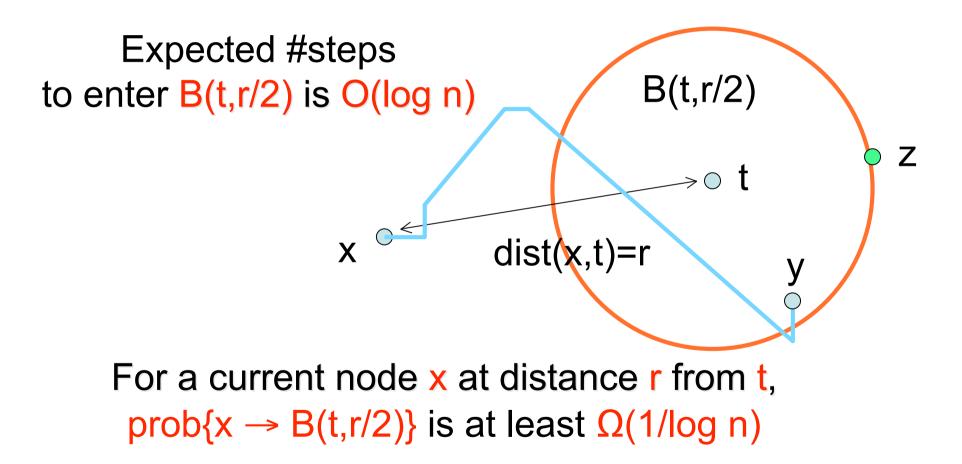
d-dimensional n-node meshes augmented with d-harmonic links



HARMONIC DISTRIBUTION

- d-dimensional mesh
- B(x,r) = ball centered at x of radius r
- S(x,r) = sphere centered at x of radius r
- In d-dimensional meshes: $\begin{aligned} &|B(x,r)| \approx r^{d} \\ &|S(x,r)| \approx r^{d-1} \\ &\sum_{v \neq u} (1/dist(u,v)^{d}) = \sum_{r} |S(u,r)|/r^{d} \\ &\approx \sum_{r} 1/r \approx \log n \end{aligned}$

PERFORMANCES



KLEINBERG'S THEOREMS

 Greedy routing performs in O(log²n / k) expected #steps in d-dimensional meshes augmented with k links per node, chosen according to the d-harmonic distribution.

- Note: $k = \log n \Rightarrow O(\log n)$ expect. #steps

 Greedy routing in d-dimensional meshes augmented with a h-harmonic distribution, h≠d, performs in Ω(n^ε) expected #steps.

EXTENSIONS

- Two-step greedy routing: O(log n / loglog n)
 - Coppersmith, Gamarnik, Sviridenko (2002)
 - Percolation theory
 - Manku, Naor, Wieder (2004)
 - NoN routing
- Routing with partial knowledge: O(log^{1+1/d} n)
 - Martel, Nguyen (2004)
 - Non-oblivious routing
 - Fraigniaud, Gavoille, Paul (2004)
 - Oblivious routing
- Decentralized routing: O(log n * log²log n)
 - Lebhar, Schabanel (2004)
 - O(log²n) expected #steps to find the route

POLYLOG NAVIGABLE NETWORKS

NAVIGABLE GRAPHS

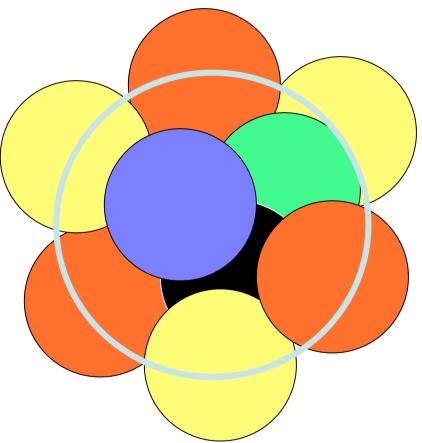
- Let $f : \mathbb{N} \to \mathbb{R}$ be a function
- An n-node graph G is f-navigable if there exists an augmentation D for G such that greedy routing in G+D performs in at most f(n) expected #steps.
- I.e., for any two nodes u,v we have $E_D(\#steps_{u \rightarrow v}) \leq f(n)$

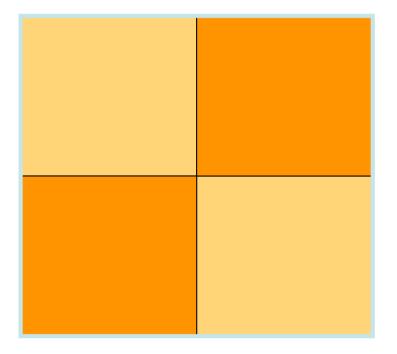
POLYLOG(N)-NAVIGABLE

GRAPHS

- Bounded growth graphs
 - Definition: $|B(x,2r)| \le \rho |B(x,r)|$
 - Duchon, Hanusse, Lebhar, Schabanel (2005,2006)
- Bounded doubling dimension
 - Definition: DD d if every B(x,2r) can be covered by at most 2^d balls of radius r
 - Slivkins (2005)
- Graphs of bounded treewidth
 - Fraigniaud (2005)
- Graphs excluding a fixed minor
 - Abraham, Gavoille (2006)

DOUBLING DIMENSION





SLIVKINS' THEOREM

Χ

HiPC'06

Ţ

24

- Theorem: Any family of graphs with doubling dimension O(loglog n) is polylog(n)-navigable.
- Proof: Graphs are augmented with
 - $-\operatorname{dist}_{G}(u,v) = r$
 - $-\operatorname{prob}(u \rightarrow v) \approx 1/IB(v,r)I$

QUESTION

Are all graphs polylog(n)-navigable?

IMPOSSIBILITY RESULT

<u>Theorem</u>

Let d such that

$\lim_{n \to +\infty} \log \log n / d(n) = 0$

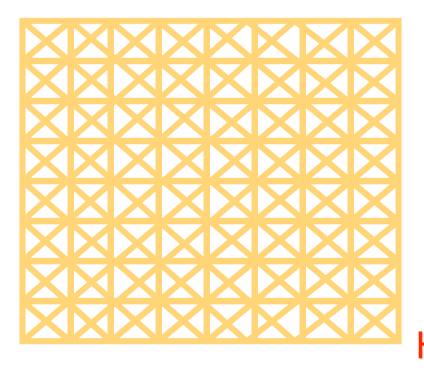
There exists an infinite family of n-node graphs with doubling dimension at most d(n) that are not polylog(n)-navigable.

Consequences:

- 1. Slivkins' result is tight
- 2. Not all graphs are polylog(n)-navigable

PROOF OF NON-NAVIGABILITY

The graphs H_d with $n=p^d$ nodes

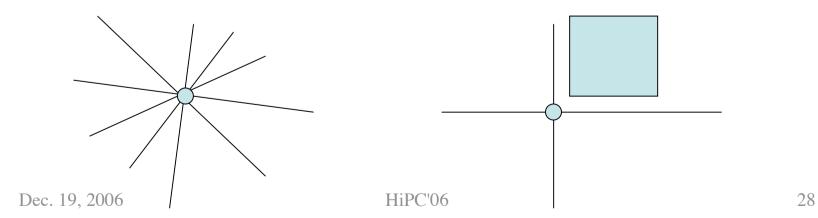


 $\begin{array}{l} x = x_1 \, x_2 \, \ldots \, x_d \\ \text{is connected to all nodes} \\ y = y_1 \, y_2 \, \ldots \, y_d \\ \text{such that } y_i = x_i + a_i \text{ where} \\ a_i \in \{-1, 0, +1\} \end{array}$

 H_d has doubling dimension d

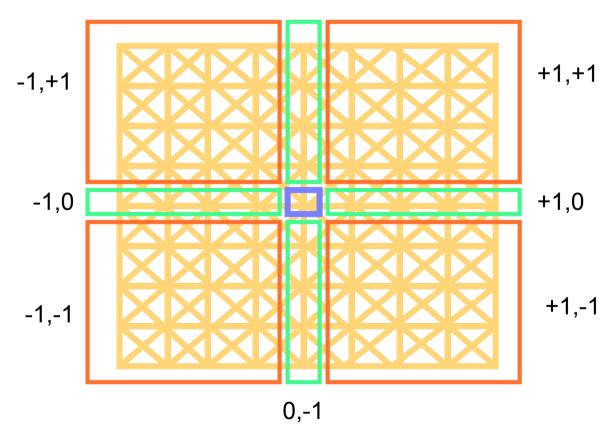
INTUITIVE APPROACH

- Large doubling dimension d
 ⇒ every nodes x ∈ H_d has choices over
 exponentially many directions
- The underlying metric of H_d is L_{∞}

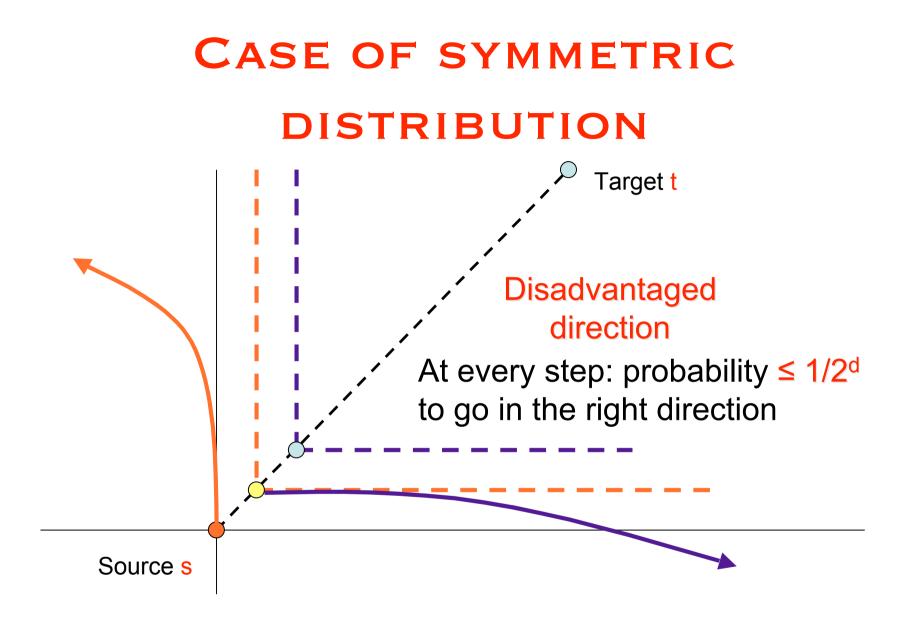


DIRECTIONS

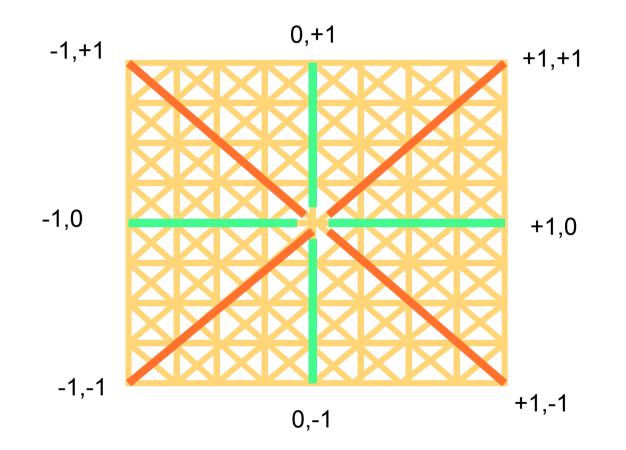
 $δ = (δ_1, ..., δ_d)$ where $δ_i ∈ \{-1, 0, +1\}$ Dir_δ(u)={v / v_i = u_i + x_i δ_i where x_i = 1...p/2}

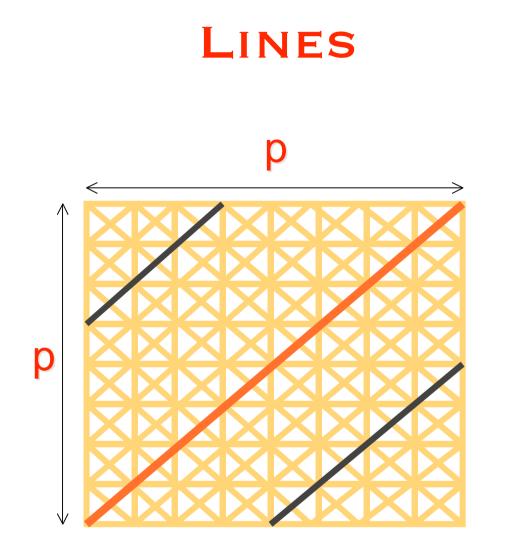


Dec. 19, 2006

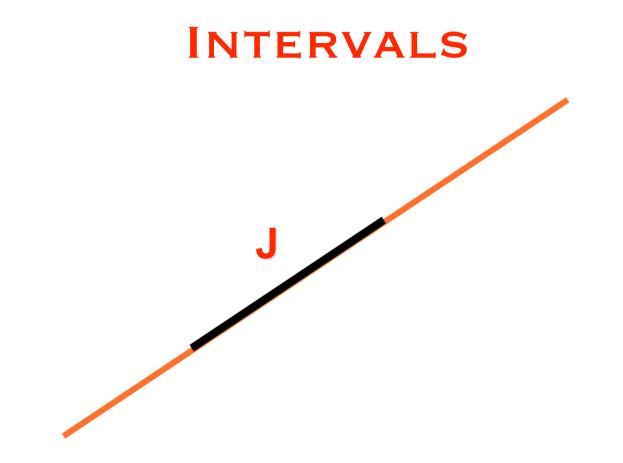


-- GENERAL CASE --DIAGONALS

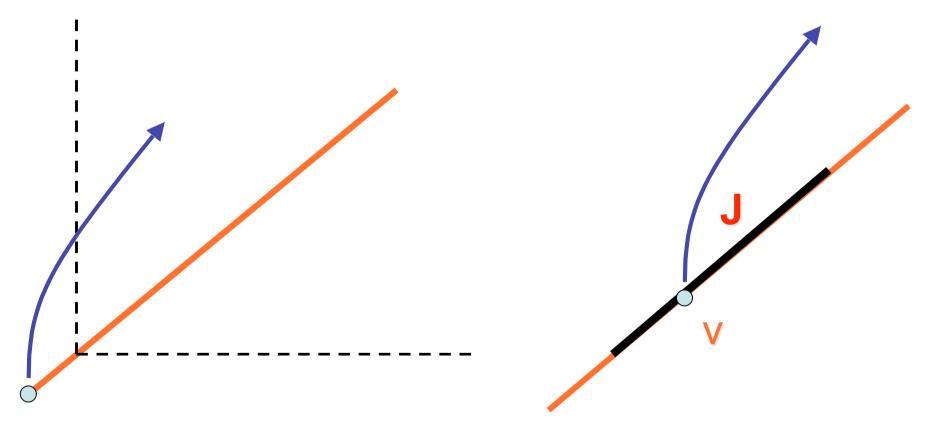




p lines in each direction



CERTIFICATES

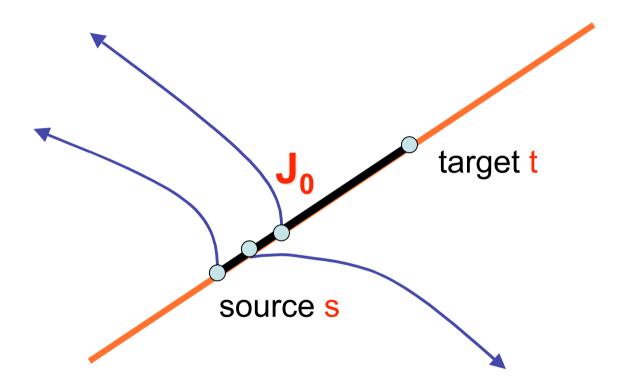


v is a certificate for J

COUNTING ARGUMENT

- 2^d directions
- Lines are split in intervals of length L
- $n/L \times 2^d$ intervals in total
- Every node belongs to many intervals, but can be the certificate of at most one interval
- If L<2^d there is one interval J₀ without certificate

L-1 STEPS FROM S TO T



IN EXPECTATION...

- $n/L \times 2^d$ n intervals without certificate
- $L = 2^{d-1} \Rightarrow n$ of the 2n intervals are without certificate
- This is true for any trial of the long links
- Hence $E = E_D$ (#interval without certificate) $\ge n$
- On the other hand:

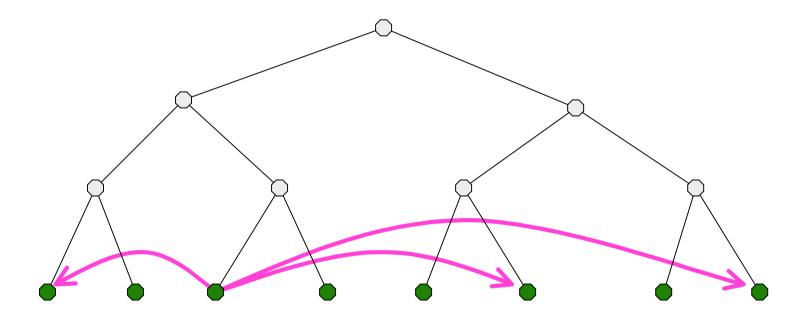
 $E = \sum_{J} Pr(J has no certificate)$

- Hence there is an interval $J_0=[s,t]$ such that $Pr(J_0 \text{ has no certificate}) \ge 1/2$
- Hence $E_D(\#steps_{s \rightarrow t}) \ge (L-1)/2$ QED

<u>Remark:</u> The proof still holds even if the long links are not set pairwise independently.

HIERARCHICAL MODELS

KLEINBERG'S HIERARCHICAL MODEL

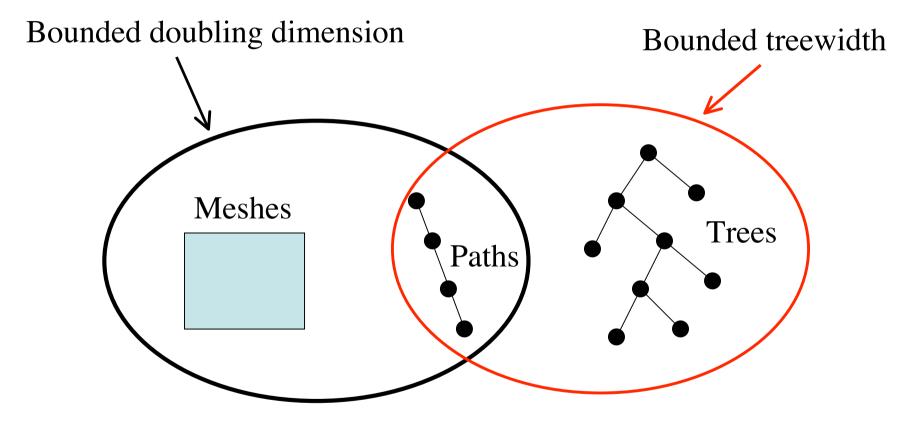


$\Theta(\log n)$ long links per node $Prob(x \rightarrow y) \approx$ height of their lowest common ancestor

INTERLEAVED HIERARCHIES

- Many hierarchies:
 - place of living
 - professional activity
 - recreative activity
 - etc.
- Can we extract a "global" hierarchy reflecting all these interleaved hierarchies?

GRAPH CLASSES

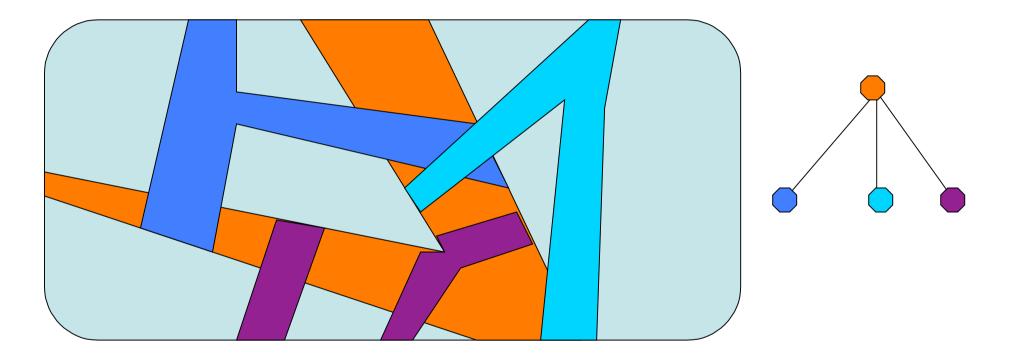


TREE-DECOMPOSITION

Definition: A tree-decomposition of a graph G is a pair (T,X) where T is a tree of node set I and X is a collection $\{X_i \subseteq V(G), i \in I\}$ such that

- $\quad \bigcup_{i \in I} X_i = V(G)$
- $\quad \forall \ e=\!\{x,y\} \in E(G), \ \exists \ i \in I \ / \ \{x,y\} \subseteq X_i$
- if $k \in I$ in on the path between i and j in T, then $X_i \cap X_j \subseteq X_k$

RECURSIVE SEPARATORS

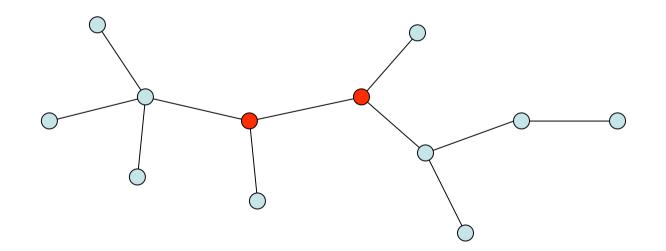


TREEWIDTH

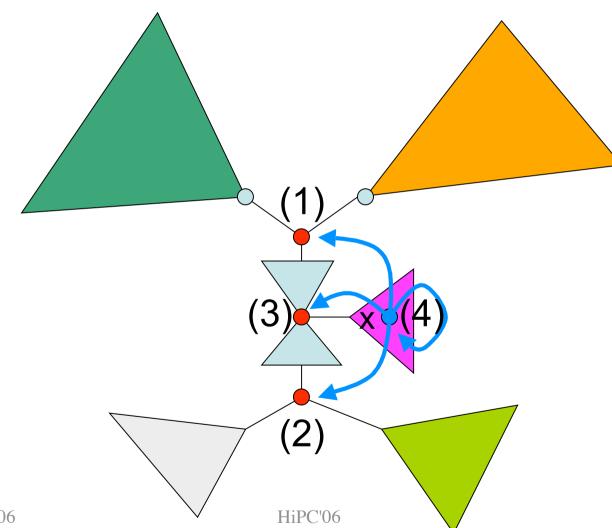
- The width of a tree-decomposition (T,X)is: width $(T,X) = \max_{i \in I} |X_i| - 1$
- The treewith of a graph G is the minimum width of any tree-decomposition (T,X) of G:
 tw(G) = min_(T,X) width(T,X)

CENTROID

A centroid of an n-node tree T is a vertex v such that $T-\{v\}$ is a forest of trees, each of at most n/2 vertices.



TREE-DECOMPOSITION BASED DISTRIBUTION



Dec. 19, 2006

THEOREM

For any n-node graph G of treewidth k, there exists a tree-decomposition based distribution
 D such that greedy routing in G+D performs in
 O(k log²n)

expected number of steps.

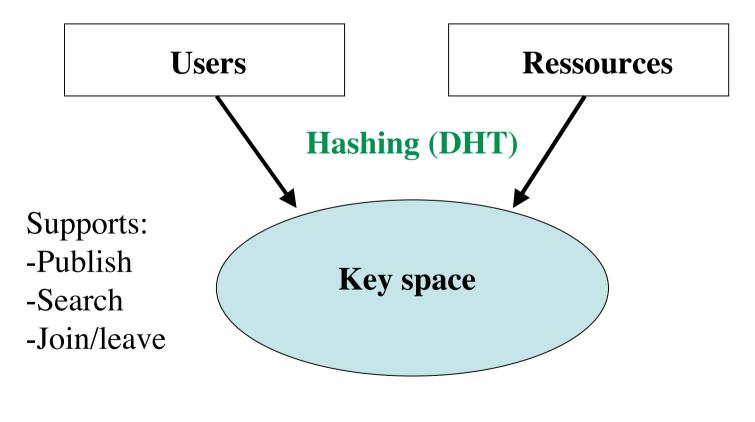
• Application: graphs of bounded treewidth.

PROOF SKETCH

- Let c be the centroid separating the current node x and t.
- It takes O(log n) expect. #steps to reach a node in c.
- The centroid c cannot be visited more than tw(G)+1 times
- There are $\leq \log n$ levels of centroids

RESSOURCE FINDING IN P2P NETWORKS

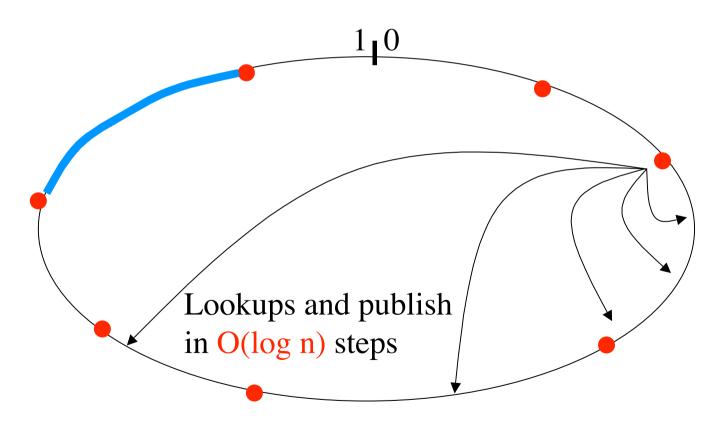
PEER-TO-PEER (P2P)



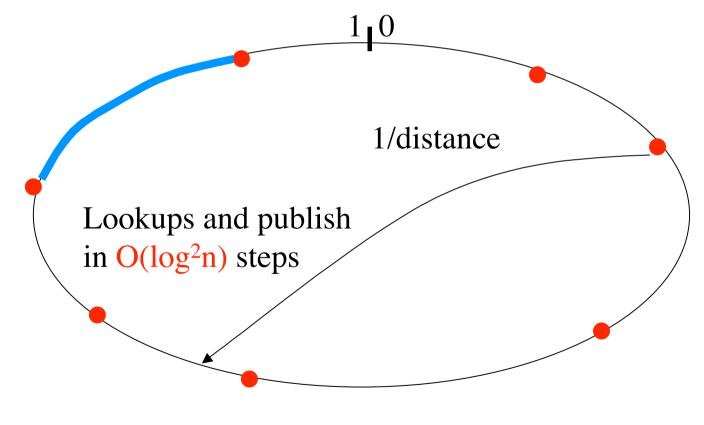
Dec. 19, 2006

ROUTING IN KEY SPACE A CASE STUDY: CHORD

[Stoica, Morris, Karger, Kaashoek, Balakrishnan]



SMALL WORLD (SYMPHONY)



HiPC'06

CHALLENGES

RESEARCH DIRECTIONS

- Augmenting arbitrary graphs
- Models
 - social networks
 - emerging properties and structures
- Applications:
 - P2P networks
 - Grid computing

OPEN PROBLEM

- Input: an n-node graph G
- Output: a collection of probability distributions D={p_u, u∈V(G)} for aumenting G, where Pr{u→v} = p_u(v)
- Measure: $T(n) = \max_{G \text{ of order } n} T_G$ where $T_G = \max_{s,t \in V(G)} E_D(GR \text{ from } s \text{ to } t)$
- $T(n) = O(\sqrt{n})$ (in fact, $O(n^{1/3})$)
- $T(n) = \Omega(n^{1/\sqrt{\log n}})$

THANK YOU !